宁夏银川市兴庆区唐徕回民中学2024年八年级下册数学期末质量跟踪监视模拟试题含解析_第1页
宁夏银川市兴庆区唐徕回民中学2024年八年级下册数学期末质量跟踪监视模拟试题含解析_第2页
宁夏银川市兴庆区唐徕回民中学2024年八年级下册数学期末质量跟踪监视模拟试题含解析_第3页
宁夏银川市兴庆区唐徕回民中学2024年八年级下册数学期末质量跟踪监视模拟试题含解析_第4页
宁夏银川市兴庆区唐徕回民中学2024年八年级下册数学期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

宁夏银川市兴庆区唐徕回民中学2024年八年级下册数学期末质量跟踪监视模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.在同一平面直角坐标系中,函数y=与函数y=-x+b(其中b是实数)的图象交点个数是().A.0个 B.1个 C.2个 D.0或1或2个2.如图,在四边形中,,分别是的中点,则四边形一定是()A.平行四边形 B.矩形 C.菱形 D.正方形3.若点在反比例函数的图像上,则下列各点一定在该图像上的是()A. B. C. D.4.如果一个等腰三角形的两边长为4、9,则它的周长为()A.17 B.22 C.17或22 D.无法计算5.下列二次根式中是最简二次根式的为()A. B. C. D.6.已知空气单位体积质量是,将用科学记数法表示为()A. B. C. D.7.与最接近的整数是()A.5 B.1 C.1.5 D.78.下列各组数据中,能做为直角三角形三边长的是()。A.1、2、3 B.3、5、7 C.32,42,52 D.5、12、139.已知一次函数y1=k1x+b1与yA.x<1 B.x>1 C.x<2 D.x>210.下列函数中,随的增大而减少的函数是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,在平面直角坐标系中,点A为,点C是第一象限上一点,以OA,OC为邻边作▱OABC,反比例函数的图象经过点C和AB的中点D,反比例函数图象经过点B,则的值为______.12.要使二次根式有意义,则自变量的取值范围是___.13.已知一次函数的图象与直线y=﹣x+1平行,且过点(8,2),那么此一次函数的解析式为.14.如图,平行四边形ABCD在平面直角坐标系中,已知∠DAB=60°,A(﹣2,0),点P在AD上,连接PO,当OP⊥AD时,点P到y轴的距离为_____.15.如图所示,△ABC为等边三角形,D为AB的中点,高AH=10cm,P为AH上一动点,则PD+PB的最小值为_______cm.16.正方形ABCD中,,P是正方形ABCD内一点,且,则的最小值是______.17.如图,在中,,,点在上,且,点在上,连结,若与相似,则_____________.18.如果等腰直角三角形的一条腰长为1,则它底边的长=________.三、解答题(共66分)19.(10分)以△ABC的三边在BC同侧分别作三个等边三角形△ABD,△BCE,△ACF,试回答下列问题:(1)四边形ADEF是什么四边形?请证明:(2)当△ABC满足什么条件时,四边形ADEF是矩形?(3)当△ABC满足什么条件时,四边形ADEF是菱形?(4)当△ABC满足什么条件时,能否构成正方形?(5)当△ABC满足什么条件时,无法构成四边形?20.(6分)老师随机抽査了本学期学生读课外书册数的情况,绘制成不完整的条形统计图和不完整的扇形统计图(如图所示).(1)补全条形统计图;(2)求出扇形统计图中册数为4的扇形的圆心角的度数;(3)老师随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后发现册数的中位数没改变,则最多补查了.21.(6分)如图,请在下列四个论断中选出两个作为条件,推出四边形ABCD是平行四边形,并予以证明(写出一种即可).①AD∥BC;②AB=CD;③∠A=∠C;④∠B+∠C=180°.已知:在四边形ABCD中,____________.求证:四边形ABCD是平行四边形.22.(8分)(1)计算:40372﹣4×2018×2019;(2)将边长为1的一个正方形和一个底边为1的等腰三角形如图摆放,求△ABC的面积.23.(8分)如图,在△ABC中,AB=AC,D是BC的中点,连接AD,在AD的延长线上取一点E,连接BE,CE.(1)求证:△ABE≌△ACE;(2)当AE与AD满足什么数量关系时,四边形ABEC是菱形?并说明理由.24.(8分)阅读下列材料:数学课上,老师出示了这样一个问题:如图1,正方形为中,点、在对角线上,且,探究线段、、之间的数量关系,并证明.某学习小组的同学经过思考,交流了自己的想法:小明:“通过观察和度量,发现与存在某种数量关系”;小强:“通过观察和度量,发现图1中线段与相等”;小伟:“通过构造(如图2),证明三角形全等,进而可以得到线段、、之间的数量关系”.老师:“此题可以修改为‘正方形中,点在对角线上,延长交于点,在上取一点,连接(如图3).如果给出、的数量关系与、的数量关系,那么可以求出的值”.请回答:(1)求证:;(2)探究线段、、之间的数量关系,并证明;(3)若,,求的值(用含的代数式表示).25.(10分)在一条直线上依次有A、B、C三个海岛,某海巡船从A岛出发沿直线匀速经B岛驶向C岛,执行海巡任务,最终达到C岛.设该海巡船行驶x(h)后,与B港的距离为y(km),y与x的函数关系如图所示.(1)填空:A、C两港口间的距离为km,;(2)求y与x的函数关系式,并请解释图中点P的坐标所表示的实际意义;(3)在B岛有一不间断发射信号的信号发射台,发射的信号覆盖半径为15km,求该海巡船能接受到该信号的时间有多长?26.(10分)解不等式组:,把它的解集在数轴上表示出来,并写出其整数解.

参考答案一、选择题(每小题3分,共30分)1、D【解析】

联立两个函数可得,再根据根的判别式确定交点的情况即可.【详解】联立两个函数得∴根的判别式的值可以为任意数∴这两个函数的图象交点个数是0或1或2个故答案为:D.【点睛】本题考查了函数交点的问题,掌握根的判别式是解题的关键.2、B【解析】

根据三角形中位线定理,平行四边形的判定定理得到四边形EFGH为平行四边形,证明∠FGH=90°,根据矩形的判定定理证明.【详解】∵E,F分别是边AB,BC的中点,∴EF=AC,EF∥AC,同理,HG=AC,HG∥AC,∴EF=HG,EF∥HG,∴四边形EFGH为平行四边形,∵F,G分别是边BC,CD的中点,∴FG∥BD,∵∴∠FGH=90°,∴平行四边形EFGH为矩形,故选B.【点睛】本题考查的是中点四边形,掌握三角形中位线定理,矩形的判定定理是解题的关键.3、C【解析】

将点(-1,2)代入反比例函数,求得,再依次将各个选项代入解析式,即可求解.【详解】解:将点(-1,2)代入中,解得:,∴反比例函数解析式为,时,,A错误;时,,B错误;时,,C正确;时,,D错误;故选C.【点睛】本题考查反比例函数,难度一般,熟练掌握反比例函数上的点一定满足函数解析式,即可顺利解题.4、B【解析】

求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长;题目给出等腰三角形有两条边长为4和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:(1)若4为腰长,9为底边长,由于4+4<9,则三角形不存在;(2)若9为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为9+9+4=1.故选:B.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;题目从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.5、B【解析】

根据最简二次根式的定义进行解答即可.【详解】解:根据最简二次根式的定义:“满足条件:(1)被开方数中不含开得尽方的因数和因式;(2)被开方数中不含分母.”可知,选项A、C、D中的二次根式都不是最简二次根式,只有B中的二次根式是最简二次根式.【点睛】本题考查的是最简二次根式的定义,掌握最简二次根式的定义:“满足条件:(1)被开方数中不含开得尽方的因数和因式;(2)被开方数中不含分母.”是解题的关键.6、C【解析】

由科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:=.故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7、B【解析】

由题意可知31与37最接近,即与最接近,从而得出答案.【详解】解:∵31<37<49,∴1<<7,∵37与31最接近,∴与最接近的整数是1.故选:B.【点睛】此题主要考查了无理数的估算能力,掌握估算的方法是解题的关键.8、D【解析】

先求出两小边的平方和,再求出大边的平方,看看是否相等即可.【详解】解:A、12+22≠32,所以以1、2、3为边不能组成直角三角形,故本选项不符合题意;B、32+52≠72,所以以3、5、7为边不能组成直角三角形,故本选项不符合题意;C、(32)2+(42)2≠(52)2,所以以32、42、52为边不能组成直角三角形,故本选项不符合题意;D、52+122=132,所以以5、12、13为边能组成直角三角形,故本选项符合题意;故选:D.【点睛】本题考查了勾股定理的逆定理,能熟记勾股定理的逆定理的内容是解此题的关键.9、A【解析】

由图象可以知道,当x=1时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式k1【详解】两条直线的交点坐标为(1,2),且当x<1时,直线y2在直线y1的上方,故不等式k1x+b1<故选A.【点睛】本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.10、D【解析】

根据一次函数的性质,k<0,y随x的增大而减少,找出各选项中k值小于0的选项即可.【详解】A、B、C选项中的函数解析式k值都是正数,y随x的增大而增大,D选项y=-2x+8中,k=-2<0,y随x的增大而减少.故选D.【点睛】本题考查了一次函数的性质,主要利用了当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.二、填空题(每小题3分,共24分)11、【解析】

过C作CE⊥x轴于E,过D作DF⊥x轴于F,易得△COE∽△DAF,设C(a,b),则利用相似三角形的性质可得C(4,b),B(10,b),进而得到.【详解】如图,过C作CE⊥x轴于E,过D作DF⊥x轴于F,则∠OEC=∠AFD=90°,又,,∽,又是AB的中点,,,设,则,,,,,反比例函数的图象经过点C和AB的中点D,,解得,,又,,,故答案为.【点睛】本题考查了反比例函数图象上点的坐标特征以及平行四边形的性质,解题的关键是掌握:反比例函数图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.12、【解析】

根据被开方数必须是非负数,可得答案.【详解】解:由题意,得,解得,故答案为:.【点睛】本题考查了二次根式的意义条件,概念:式子叫二次根式.二次根式中的被开方数必须是非负数,否则二次根式无意义.13、y=-x+1【解析】由函数的图象与直线y=-x+1平行,可得斜率,将点(8,2)代入即可人求解.解:设所求一次函数的解析式为y=kx+b,∵函数的图象与直线y=-x+1平行,∴k=-1,又过点(8,2),有2=-1×8+b,解得b=1,∴一次函数的解析式为y=-x+1,故答案为y=-x+1.14、【解析】

首先根据点A的坐标求得OA的长,然后求得PO的长,从而求得点P到y轴的距离即可.【详解】解:∵A(﹣2,0),∴OA=2,∵∠DAB=60°,OP⊥AD,∴∠AOP=30°,∴AP=1,∴OP=,作PE⊥y轴,∵∠POA=30°,∴∠OPE=30°,∴OE=∴PE=,∴点P到y轴的距离为,故答案为:.【点睛】考查了平行四边形的性质,能够将点的坐标转化为线段的长是解答本题的关键,难度不大.15、10【解析】

连接PC,根据等边三角形三线合一的性质,可得PC=BP,PD+PB要取最小值,应使D、P、C三点一线.【详解】连接PC,∵△ABC为等边三角形,D为AB的中点,∴PD+PB的最小值为:PD+PB=PC+PD=CD=AH=10cm.故答案为:10【点睛】考查轴对称-最短路线问题,等边三角形的性质,找出点P的位置是解题的关键.16、【解析】

根据正方形性质,当A,P,C在同一直线上时,PC+PA是值小.【详解】当A,P,C在同一直线上时,PC+PA是值小.因为,四边形ABCD是正方形,所以,AC=.故答案为【点睛】本题考核知识点:正方形性质,勾股定理.解题关键点:利用两点之间线段最短解决问题.17、2或4.5【解析】

根据题意,要使△AEF与△ABC相似,由于本题没有说明对应关系,故采用分类讨论法.有两种可能:当△AEF∽△ABC时;当△AEF∽△ACB时.最后利用相似三角形的对应边成比例即可求得线段AF的长即可.【详解】当△AEF∽△ABC时,则,AF=2;当△AEF∽△ACB时,则,AF=4.5.故答案为:2或4.5.【点睛】本题考查了相似三角形的性质应用.利用相似三角形性质时,要注意相似比的对应关系.分类讨论时,要注意对应关系的变化,防止遗漏.18、【解析】

根据等腰直角三角形两腰相等及勾股定理求解即可.【详解】解:∵等腰直角三角形的一腰长为1,则另一腰长也为1∴由勾股定理知,底边的长为故答案为:.【点睛】本题考查了等腰三角形的腰相等,勾股定理等知识点,熟练掌握基本的定理及图形的性质是解决此类题的关键.三、解答题(共66分)19、(1)见解析;(2)当△ABC中的∠BAC=150°时,四边形ADEF是矩形;(3)当△ABC中的AB=AC时,四边形ADEF是菱形;(4)当∠BAC=150°且AB=AC时,四边形ADEF是正方形;(5)当∠BAC=60°时,D、A、F为同一直线,与E点构不成四边形,即以A、D、E、F为顶点的四边形不存在.【解析】

(1)通过证明△DBE≌△ABC,得到DE=AC,利用等边三角形ACF,可得DE=AF,同理证明与全等,利用等边三角形,得AD=EF,可得答案.(2)利用平行四边形ADEF是矩形,结合已知条件等边三角形得到即可.(3)利用平行四边形ADEF是菱形形,结合已知条件等边三角形得到即可.(4)结合(2)(3)问可得答案.(5)当四边形ADEF不存在时,即出现三个顶点在一条直线上,因此可得答案。【详解】解:(1)∵△BCE、△ABD是等边三角形,∴∠DBA=∠EBC=60°,AB=BD,BE=BC,∴∠DBE=∠ABC,∴△DBE≌△ABC,∴DE=AC,又△ACF是等边三角形,∴AC=AF,∴DE=AF,同理可证:AD=EF,∴四边形ADEF是平行四边形.(2)假设四边形ADEF是矩形,则∠DAF=90°,又∠DAB=∠FAC=60°,∠DAB+∠FAC+∠DAF+∠BAC=360°∴∠BAC=150°.因此当△ABC中的∠BAC=150°时,四边形ADEF是矩形.(3)假设四边形ADEF是菱形,则AD=DE=EF=AF∵AB=AD,AC=AF,∴AB=AC因此当△ABC中的AB=AC时,四边形ADEF是菱形.(4)结合(2)(3)问可知当∠BAC=150°且AB=AC时,四边形ADEF是正方形.(5)由图知道:∠DAB+∠FAC+∠DAF+∠BAC=360°∴当∠BAC=60°时,D、A、F为同一直线,与E点构不成四边形,即以A、D、E、F为顶点的四边形不存在.【点睛】本题考查了平行四边形的判定,菱形,矩形,正方形的性质与判定,全等三角形的判定,等边三角形的性质等知识点的应用,是一道综合性比较强的题目,掌握相关的知识点是解题的关键.20、(1)见解析(2)75°(3)3人【解析】

(1)用读书为6册的人数除以它所占的百分比得到调查的总人数;再用总人数分别减去读书为4册、6册和7册的人数得到读书5册的人数,即可解答(2)用4册的人数除以总人数乘以360°即可解答(3)根据中位数的定义可判断总人数不能超过27,从而得到最多补查的人数.【详解】(1)抽查的学生总数为6÷25%=24(人),读书为5册的学生数为24-5-6-4=9(人)则条形统计图为:(2)=75°(3)因为4册和5册的人数和为14,中位数没改变,所以总人数不能超过27,即最多补查了3人.【点睛】此题考查条形统计图,扇形统计图,中位数的定义,解题关键在于看懂图中数据21、已知:①③(或①④或②④或③④),证明见解析.【解析】试题分析:根据平行四边形的判定方法就可以组合出不同的结论,然后即可证明.其中解法一是证明两组对角相等的四边形是平行四边形;解法二是证明两组对边平行的四边形是平行四边形;解法三是证明一组对边平行且相等的四边形是平行四边形;解法四是证明两组对角相等的四边形是平行四边形.试题解析:已知:①③,①④,②④,③④均可,其余均不可以.解法一:已知:在四边形ABCD中,①AD∥BC,③∠A=∠C,求证:四边形ABCD是平行四边形.证明:∵AD∥BC,∴∠A+∠B=180°,∠C+∠D=180°.∵∠A=∠C,∴∠B=∠D.∴四边形ABCD是平行四边形.解法二:已知:在四边形ABCD中,①AD∥BC,④∠B+∠C=180°,求证:四边形ABCD是平行四边形.证明:∵∠B+∠C=180°,∴AB∥CD,又∵AD∥BC,∴四边形ABCD是平行四边形;解法三:已知:在四边形ABCD中,②AB=CD,④∠B+∠C=180°,求证:四边形ABCD是平行四边形.证明:∵∠B+∠C=180°,∴AB∥CD,又∵AB=CD,∴四边形ABCD是平行四边形;解法四:已知:在四边形ABCD中,③∠A=∠C,④∠B+∠C=180°,求证:四边形ABCD是平行四边形.证明:∵∠B+∠C=180°,∴AB∥CD,∴∠A+∠D=180°,又∵∠A=∠C,∴∠B=∠D,∴四边形ABCD是平行四边形.考点:平行四边形的判定.22、(1)1;(2).【解析】

(1)根据完全平方公式进行计算,即可得出答案;(2)如图,过点C作CD⊥BF于D,CE⊥AB,交AB延长线于E,利用正方形和等腰三角形的性质得出CE的长,进而得出△ABC的面积即可.【详解】(1)40372﹣4×2018×2019=(2019+2018)2﹣4×2018×2019=20192+2×2019×2018+20182-4×2018×2019=20192-2×2019×2018+20182=(2019﹣2018)2=12=1.(2)如图,过点C作CD⊥BF于D,CE⊥AB,交AB延长线于E,∵△BCF是等腰三角形,∴DB=BF,∵四边形ABFG是正方形,∴∠FBE=90°,∴四边形BECD是矩形,∵BF=1,∴CE=BD=BF,∴△ABC的面积=AB•CE=×1×=.【点睛】本题考查正方形的性质、等腰三角形的性质及矩形的判定,熟练掌握等腰三角形“三线合一”的性质是解题关键.23、(1)证明见解析(2)当AE=2AD(或AD=DE或DE=AE)时,四边形ABEC是菱形【解析】

(1)证明:∵AB=AC点D为BC的中点∴∠BAE=∠CAE又∵AB=AC,AE=AE∴△ABE≌△ACE(SAS)(2)当AE=2AD(或AD=DE或DE=AE)时,四边形ABEC是菱形∵AE=2AD,∴AD=DE又点D为BC中点,∴BD=CD∴四边形ABEC为平行四形∵AB=AC∴四边形ABEC为菱形24、(1)详见解析;(2),证明详见解析;(3)【解析】

(1)依题意由SAS可证:.可推(2)过点作,且,连接、,由SAS可证可得,可得.利用勾股定理即可知:.即.(3)延长至使,连接.设,,则,,,,.由SAS可证,可得,,由角关系推出.所以.推出,所以.得出结论.【详解】(1)证明:∵四边形为正方形,∴,.∵,∴.∴.(2)结论:.证明:如图2,过点作,且,连

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论