湖南省衡阳市2024年八年级数学第二学期期末联考模拟试题含解析_第1页
湖南省衡阳市2024年八年级数学第二学期期末联考模拟试题含解析_第2页
湖南省衡阳市2024年八年级数学第二学期期末联考模拟试题含解析_第3页
湖南省衡阳市2024年八年级数学第二学期期末联考模拟试题含解析_第4页
湖南省衡阳市2024年八年级数学第二学期期末联考模拟试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省衡阳市2024年八年级数学第二学期期末联考模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如图,在正方形中,为的中点,连结并延长,交边的延长线于点,对角线交于点,已知,则线段的长是()A. B. C. D.2.下列根式中属最简二次根式的是()A. B. C. D.3.2022年将在北京---张家口举办冬季奥运会,很多学校开设了相关的课程.某校8名同学参加了滑雪选修课,他们被分成甲、乙两组进行训练,身高(单位:cm)如下表所示:队员1队员2队员3队员4甲组176177175176乙组178175177174设两队队员身高的平均数依次为,,方差依次为,,则下列关系中完全正确的是().A. B.C. D.4.以下图形中,既是中心对称图形,又是轴对称图形的是()A.三角形 B.菱形 C.等腰梯形 D.平行四边形5.与是同类二次根式的是()A. B. C. D.6.下列条件中能构成直角三角形的是().A.2、3、4 B.3、4、5 C.4、5、6 D.5、6、77.在实际生活中,我们经常利用一些几何图形的稳定性或不稳定性,下列实物图中利用了稳定性的是()A.电动伸缩门 B.升降台C.栅栏 D.窗户8.小明发现下列几组数据能作为三角形的边:①3,4,5;②5,12,13;③12,15,20;④8,24,25;其中能作为直角三角形的三边长的有()组A.1 B.2 C.3 D.49.若a+1有意义,则()A.a≤ B.a<﹣1 C.a≥﹣1 D.a>﹣210.如果把分式中x、y的值都扩大为原来的2倍,则分式的值()A.扩大为原来的4倍 B.扩大为原来的2倍C.不变 D.缩小为原来的11.2013年,某市发生了严重干旱,该市政府号召居民节约用水,为了解居民用水情况,在某小区随机抽查了10户家庭的月用水量,结果统计如图,则关于这10户家庭的月用水量,下列说法错误的是()A.众数是6 B.极差是2 C.平均数是6 D.方差是412.学习勾股定理时,数学兴趣小组设计并组织了“勾股定理的证明”的比赛,全班同学的比赛得分统计如表:得分(分60708090100人数(人8121073则得分的中位数和众数分别为A.75,70 B.75,80 C.80,70 D.80,80二、填空题(每题4分,共24分)13.如图P(3,4)是直角坐标系中一点,则P到原点的距离是________.14.如图,▱ABCD的对角线AC、BD相交于点O,E是AB中点,且AE+EO=4,则▱ABCD的周长为_____.15.如图,双曲线经过四边形OABC的顶点A、C,∠ABC=90°,OC平分OA与x轴正半轴的夹角,AB∥x轴,将△ABC沿AC翻折后得到△AB'C,B'点落在OA上,则四边形OABC的面积是_____.16.若关于x的分式方程产生增根,则m=_____.17.如图,在四边形ABCD中,对角线AC、BD交于点O,AD∥BC,请添加一个条件:______,使四边形ABCD为平行四边形(不添加任何辅助线).18.分解因式_____.三、解答题(共78分)19.(8分)直线是同一平面内的一组平行线.(1)如图1.正方形的4个顶点都在这些平行线上,若四条直线中相邻两条之间的距离都是1,其中点,点分别在直线和上,求正方形的面积;(2)如图2,正方形的4个顶点分别在四条平行线上,若四条直线中相邻两条之间的距离依次为.①求证:;②设正方形的面积为,求证.20.(8分)已知某开发区有一块四边形的空地ABCD,如图所示,现计划在空地上种植草皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,问要多少投入?21.(8分)如图,点是等边内一点,,,将绕点顺时针方向旋转得到,连接,.(1)当时,判断的形状,并说明理由;(2)求的度数;(3)请你探究:当为多少度时,是等腰三角形?22.(10分)(﹣)2(+)+|2﹣|﹣23.(10分)某中学举行春季长跑比赛活动,小明从起点学校西门出发,途经市博物馆后按原路返还,沿比赛路线跑回终点学校西门.设小明离开起点的路程s(千米)与跑步时间t(分钟)之间的函数关系如图所示,其中从起点到市博物馆的平均速度是0.3千米/分钟,用时35分钟根据图象提供的信息,解答下列问题:(1)求图中的值,并求出所在直线方程;(2)组委会在距离起点2.1千米处设立一个拍摄点,小明从第一次过点到第二次经过点所用的时间为68分钟①求所在直线的函数解析式;②该运动员跑完赛程用时多少分钟?24.(10分)阅读下列解题过程,并解答后面的问题:如图,在平面直角坐标系中,,,C为线段AB的中点,求C的坐标.解:分别过A,C作x轴的平行线,过B,C作y轴的平行线,两组平行线的交点如图1.设C的坐标为,则D、E、F的坐标为,,由图可知:,∴C的坐标为问题:(1)已知A(-1,4),B(3,-2),则线段AB的中点坐标为______(2)平行四边形ABCD中,点A、B、C的坐标分别为(1,-4),(0,2),(5,6),求D的坐标.(3)如图2,B(6,4)在函数的图象上,A的坐标为(5,2),C在x轴上,D在函数的图象上,以A、B、C、D四个点为顶点构成平行四边形,直接写出所有满足条件的D点的坐标.25.(12分)探究与应用:在学习几何时,我们可以通过分离和构造基本图形,将几何“模块”化.例如在相似三角形中,字形是非常重要的基本图形,可以建立如下的“模块”(如图①):.(1)请就图①证明上述“模块”的合理性;(2)请直接利用上述“模块”的结论解决下面两个问题:①如图②,已知点,点在直线上运动,若,求此时点的坐标;②如图③,过点作轴与轴的平行线,交直线于点,求点关于直线的对称点的坐标.26.已知关于x的一元二次方程x2﹣2tx+t2﹣2t+4=1.(1)当t=3时,解这个方程;(2)若m,n是方程的两个实数根,设Q=(m﹣2)(n﹣2),试求Q的最小值.

参考答案一、选择题(每题4分,共48分)1、D【解析】

根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出,结合FG=2可求出AF、AG的长度,由CG∥AB、AB=2CG可得出CG为△EAB的中位线,再利用三角形中位线的性质可求出AE的长度,此题得解.【详解】解:∵四边形ABCD为正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴,∴AF=2GF=4,∴AG=6,∵CG∥AB,AB=2CG,∴CG为△EAB的中位线,∴AE=2AG=12,故选D.【点睛】本题考查了相似三角形的判定与性质、正方形的性质以及三角形的中位线,利用相似三角形的性质求出AF的长度是解题的关键.2、A【解析】试题分析:最简二次根式的是满足两个条件:1.被开方数中不含分母.2.被开方数中不能含有开得方的因数或因式.故符合条件的只有A.故选A考点:最简二次根式3、D【解析】首先求出平均数再进行吧比较,然后再根据法方差的公式计算.=,=,=,=所以=,<.故选A.“点睛”此题主要考查了平均数和方差的求法,正确记忆方差公式是解决问题的关键.4、B【解析】

关于某条直线对称的图形叫轴对称图形.绕一个点旋转180度后所得的图形与原图形完全重合的图形叫做中心对称图形.【详解】解:A、三角形既不是中心对称图形,也不是轴对称图形;B、菱形既是中心对称图形,也是轴对称图形;C、等腰梯形是轴对称图形;D、平行四边形是中心对称图形.故选B.【点睛】掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.5、D【解析】

把各个二次根式化为最简二次根式,再根据同类二次根式的概念进行判断即可.【详解】解:A.与不是同类二次根式,此选项不符合题意;B.与不是同类二次根式,此选项不符合题意;C.与不是同类二次根式,此选项不符合题意;D.与是同类二次根式,此选项符合题意;故选:D.【点睛】本题考查的知识点是同类二次根式,需注意要把二次根式化简后再看被开方数是否相同.6、B【解析】

根据勾股定理逆定理进行计算判断即可.【详解】A.,故不能构成直角三角形;B.,故能构成直角三角形;C.,故不能构成直角三角形;D.,故不能构成直角三角形.故选:B.【点睛】本题考查勾股定理的逆定理,熟记定理是关键,属于基础题型.7、C【解析】

根据三角形具有稳定性和四边形具有不稳定性进行辨别即可.【详解】A.由平行四边形的特性可知,平行四边形具有不稳定性,所以容易变形,伸缩门运用了平行四边形易变形的特性;B.升降台也是运用了四边形易变形的特性;C.栅栏是由一些三角形焊接而成的,它具有稳定性;D.窗户是由四边形构成,它具有不稳定性.故选C.【点睛】此题主要考查了平行四边形的特性是容易变形以及三角形具有稳定性.8、B【解析】

根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,就是直角三角形,没有这种关系,就不是直角三角形,分析得出即可.【详解】①∵∴此三角形是直角三角形,符合题意;②∵∴此三角形是直角三角形,符合题意;③∵∴此三角形不是直角三角形,不符合题意;④∵∴此三角形不是直角三角形,不符合题意;故其中能作为直角三角形的三边长的有2组故选:B【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.9、C【解析】

直接利用二次根式的定义计算得出答案.【详解】若a+1有意义,则a+1≥0,解得:a≥﹣1.故选:C.【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.10、B【解析】

根据x,y都扩大2倍,即可得出分子扩大4倍,分母扩大2倍,由此即可得出结论.【详解】解:∵分式中的x与y都扩大为原来的2倍,∴分式中的分子扩大为原来的4倍,分母扩大为原来的2倍,∴分式的值扩大为原来的2倍.故选:B.【点睛】此题考查分式的性质,解题关键在于掌握其性质11、D【解析】

众数是一组数据中出现次数最多的数,极差是数据中最大的与最小的数据的差,平均数是所有数据的和除以数据的个数,分别根据以上定义可分别求出众数,极差和平均数,然后根据方差的计算公式进行计算求出方差,即可得到答案.【详解】解:这组数据6出现了6次,最多,所以这组数据的众数为6;这组数据的最大值为7,最小值为5,所以这组数据的极差=7﹣5=2;这组数据的平均数=(5×2+6×6+7×2)=6;这组数据的方差S2=[2•(5﹣6)2+6•(6﹣6)2+2•(7﹣6)2]=0.4;所以四个选项中,A、B、C正确,D错误.故选:D.【点睛】本题考查了方差的定义和意义:数据x1,x2,…xn,其平均数为,则其方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2];方差反映了一组数据在其平均数的左右的波动大小,方差越大,波动越大,越不稳定;方差越小,波动越小,越稳定.也考查了平均数和众数以及极差的概念.12、A【解析】

根据众数的定义,找到该组数据中出现次数最多的数即为众数;根据中位数定义,将该组数据按从小到大依次排列,处于中间位置的两个数的平均数即为中位数.【详解】全班共有40人,40人分数,按大小顺序排列最中间的两个数据是第20,21个,故得分的中位数是(分),得70分的人数最多,有12人,故众数为70(分),故选.【点睛】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.二、填空题(每题4分,共24分)13、5【解析】

根据勾股定理,可得答案.【详解】解:PO=32+4故选:C.【点睛】本题考查了点的坐标,利用勾股定理是解题关键.14、1【解析】

首先证明OE=BC,再由AE+EO=4,推出AB+BC=8,然后计算周长即可解答.【详解】解:∵四边形ABCD是平行四边形,∴OA=OC,∵AE=EB,∴OE=BC,∵AE+EO=4,∴2AE+2EO=8,∴AB+BC=8,∴平行四边形ABCD的周长=2×8=1,故答案为:1.【点睛】本题考查了平行四边形的性质、三角形中位线定理,熟练掌握是解题的关键.15、1【解析】

如图,延长BA交y轴于E,延长BC交x轴于F,连接OC.,由题意△ACB≌△ACB',△OCF≌△OCB',推出BC=CB'=CF,设BC=CF=a,OF=BE=2b,首先证明AE=AB,再证明S△ABCS△OCF,由此即可解决问题.【详解】如图,延长BA交y轴于E,延长BC交x轴于F,连接OC.由题意△ACB≌△ACB',△OCF≌△OCB',∴BC=CB'=CF,设BC=CF=a,OF=BE=2b.∵S△AOE=S△OCF,∴2a×AE2b×a,∴AE=b,∴AE=AB=b,∴S△ABCS△OCF,S△OCB'=S△OFC=,∴S四边形OABC=S△OCB'+2S△ABC21.故答案为:1.【点睛】本题考查了反比例函数比例系数k、翻折变换等知识,解题的关键是理解反比例函数的比例系数k的几何意义,学会利用参数解决问题,属于中考常考题型.16、1【解析】

方程两边都乘以化为整式方程,表示出方程的解,依据增根为,即可求出的值.【详解】解:方程去分母得:,解得:,由方程有增根,得到,则的值为1.故答案为:1.【点睛】此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.17、AD=BC.【解析】

直接利用平行四边形的判定方法直接得出答案.【详解】当AD∥BC,AD=BC时,四边形ABCD为平行四边形.故答案是AD=BC(答案不唯一).18、【解析】

提取公因数4,再根据平方差公式求解即可.【详解】故答案为:【点睛】本题考查了因式分解的问题,掌握平方差公式是解题的关键.三、解答题(共78分)19、(1)9或5;(2)①见解析,②见解析【解析】

(1)分两种情况:①如图1-1,得出正方形ABCD的边长为2,求出正方形ABCD的面积为9;②如图1-2,过点B作EF⊥l1于E,交l4于F,则EF⊥l4,证明△ABE≌△BCF(AAS),得出AE=BF=2由勾股定理求出AB=,即可得出答案;(2)①过点B作EF⊥l1于E,交l4于F,作DM⊥l4于M,证明△ABE≌△BCF(AAS),得出AE=BF,同理△CDM≌△BCF(AAS),得出△ABE≌△CDM(AAS),得出BE=DM即可;②由①得出AE=BF=h2+h2=h2+h1,得出正方形ABCD的面积S=AB2=AE2+BE2,即可得到答案.【详解】解:(1)①如图,当点分别在上时,面积为:;②如图,当点分别在上时,过点B作EF⊥l1于E,交l4于F,则EF⊥l4,∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∴∠ABE+∠CBF=180°-90°=90°,∵∠CBF+∠BCF=90°,∴∠ABE=∠BCF,在△ABE和△BCF中,∴△ABE≌△BCF(AAS),∴AE=BF=2,∴AB=,∴正方形ABCD的面积=AB2=5;综上所述,正方形ABCD的面积为9或5;(2)①证明:过点B作EF⊥l1于E,交l4于F,作DM⊥l4于M,如图所示:则EF⊥l4,∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∴∠ABE+∠CBF=180°-90°=90°,∵∠CBF+∠BCF=90°,∴∠ABE=∠BCF,在△ABE和△BCF中,,

∴△ABE≌△BCF(AAS),∴AE=BF,同理△CDM≌△BCF(AAS),∴△ABE≌△CDM(AAS),∴BE=DM,即h1=h2.②解:由①得:AE=BF=h2+h2=h2+h1,∵正方形ABCD的面积:S=AB2=AE2+BE2,∴S=(h2+h1)2+h12=2h12+2h1h2+h3.【点睛】本题考查了正方形的性质、全等三角形的判定和性质、勾股定理等知识;熟练掌握正方形的性质,证明三角形全等是解题的关键.20、7200元【解析】

仔细分析题目,需要求得四边形的面积才能求得结果.连接BD,在直角三角形ABD中可求得BD的长,由BD、CD、BC的长度关系可得三角形DBC为一直角三角形,DC为斜边;由此看,四边形ABCD由Rt△ABD和Rt△DBC构成,则容易求解.【详解】连接BD,在Rt△ABD中,BD2=AB2+AD2=32+42=52,在△CBD中,CD2=132,BC2=122,而122+52=132,即BC2+BD2=CD2,∴∠DBC=90°,S四边形ABCD=S△BAD+S△DBC=⋅AD⋅AB+DB⋅BC=×4×3+×12×5=36.所以需费用36×200=7200(元).【点睛】此题考查勾股定理的应用,解题关键在于作辅助线和利用勾股定理进行计算.21、(1)为直角三角形,理由见解析;(2);(3)当为或或时,为等腰三角形.【解析】

(1)由旋转可以得出和均为等边三角形

,再根据求出,进而可得为直角三角形;(2)因为进而求得,根据,即可求出求的度数;(3)由条件可以表示出∠AOC=250°-a,就有∠AOD=190°-a,∠ADO=a-60°,当∠DAO=∠DOA,∠AOD=ADO或∠OAD=∠ODA时分别求出a的值即可.【详解】解:(1)为直角三角形,理由如下:绕顺时针旋转得到,和均为等边三角形,,,,,为直角三角形;(2)由(1)知:,,,,;(3)∵∠AOB=110°,∠BOC=α∴∠AOC=250°-a.∵△OCD是等边三角形,∴∠DOC=∠ODC=60°,∴∠ADO=a-60°,∠AOD=190°-a,当∠DAO=∠DOA时,2(190°-a)+a-60°=180°,解得:a=140°当∠AOD=ADO时,190°-a=a-60°,解得:a=125°,当∠OAD=∠ODA时,190°-a+2(a-60°)=180°,解得:a=110°∴α=110°,α=140°,α=125°.【点睛】本题考查了等边三角形的判定与性质的运用,旋转的性质的运用,直角三角形的判定,全等三角形的判定及性质的运用,等腰三角形的判定及性质的运用,解答时证明三角形全等是关键.22、﹣1.【解析】

首先利用平方差公式化简,进而利用二次根式混合运算法则计算得出答案.【详解】原式=(5﹣3)(﹣)+1﹣1﹣=1﹣1+1﹣1﹣=﹣1.【点睛】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.23、(1);(2)①;②85分钟【解析】

(1)根据路程=速度×时间,再把A点的值代入即可解决问题.(2)①先求出A、B两点坐标即可解决问题.②令s=0,求出x的值即可解决问题.【详解】解:(1)∵从起点到市博物馆的平均速度是0.3千米/分钟,用时35分钟,∴千米.∴,设直线的解析式为:,把代入,得,解得,,∴直线的解析式为:;(2)①∵直线解析式为,∴当时,,解得,∵小明从第一次经过C点到第二次经过C点所用的时间为68分钟,∴小明从起点到第二次经过C点所用的时间是,分钟,∴直线经过,,设直线解析式,∴,,解得,,∴直线解析式为.②小明跑完赛程用的时间即为直线与轴交点的横坐标,∴当时,,解得,∴小明跑完赛程用时85分钟.【点睛】此题考查一次函数综合题,解题关键在于列出方程.24、(1)(1,1);(2)D的坐标为(6,0);(3)D(2,2)或D(−6,−2)、D(10,6).【解析】

(1)直接套用中点坐标公式,即可得出中点坐标;(2)根据AC、BD的中点重合,可得出,,代入数据可得出点D的坐标;(3)分类讨论,①当AB为该平行四边形一边时,此时CD∥AB,分别求出以AD、BC为对角线时,以AC、BD为对角线的情况可得出点D坐标;②当AB为该平行四边形的一条对角线时,根据AB中点与CD中点重合,可得出点D坐标.【详解】解:(1)AB中点坐标为(,)即(1,1);(2)根据平行四边形的性质:对角线互相平分,可知AC、BD的中点重合,由中点坐标公式可得:,,代入数据得:,,解得:xD=6,yD=0,所以点D的坐标为(6,0);(3)①当AB为该平行四边形一边时,则CD∥AB,对角线为AD、BC或AC、BD;故可得:,或,,故可得yC−yD=yA−yB=2或yD−yC=yA−yB=−2,∵yC=0,∴yD=2或−2,代入到y=x+1中,可得D(2,2)或D(−6,−2).当AB为该平行四边形的一条对角线时,则CD为另一条对角线;,,∴yC+yD=yA+yB=2+4,∵yC=0,∴yD=6,代入到y=x+1中,可得D(10,6)综上,符合条件的D点坐标为D(2,2)或D(−6,−2)、D(10,6).【点睛】本题考查了一次函数的综合题,涉及了中点坐标公式、平行四边形的性质,难点在第三问,注意分类讨论,不要漏解,难度较大.25、(1)见解析;(2)①;②【解析】

(1)根据余角的性质就可以求出∠B=∠DCE,再由∠A=∠D=90°,就可以得出结论;(2)①作AG⊥x轴于点G,BH⊥x轴于点H,可以得出△AGO∽△OHB,可以得出,设点B的坐标为(x,-2x+1),建立方程求出其解就可以得出结论;②过点E作EN⊥AC的延长线于点N,过点D作DM⊥NE的延长线于点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论