泰州市智堡实验学校2024年八年级下册数学期末质量检测模拟试题含解析_第1页
泰州市智堡实验学校2024年八年级下册数学期末质量检测模拟试题含解析_第2页
泰州市智堡实验学校2024年八年级下册数学期末质量检测模拟试题含解析_第3页
泰州市智堡实验学校2024年八年级下册数学期末质量检测模拟试题含解析_第4页
泰州市智堡实验学校2024年八年级下册数学期末质量检测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

泰州市智堡实验学校2024年八年级下册数学期末质量检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如图,在平面直角坐标系中,已知点A(1,3),B(n,3),若直线y=2x与线段AB有公共点,则n的值不可能是()A.1.4 B.1.5 C.1.6 D.1.72.已知y=(k-3)x|k|-2+2是一次函数,那么k的值为()A. B.3 C. D.无法确定3.式子有意义,则x的取值范围是()A.x>1 B.x<1 C.x≥1 D.x≤14.如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,若添加下列一个条件后,仍然不能证明△ABC≌△DEF,则这个条件是()A.∠A=∠D B.BC=EF C.∠ACB=∠F D.AC=DF5.如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为()A.1 B.2 C.3 D.46.下列说法:①实数和数轴上的点是一一对应的;②无理数是开方开不尽的数;③负数没有立方根;④16的平方根是±4,用式子表示是=±4;⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0,其中错误的是()A.0个 B.1个 C.2个 D.3个7.下列说法错误的是()A.“买一张彩票中大奖”是随机事件B.不可能事件和必然事件都是确定事件C.“穿十条马路连遇十次红灯”是不可能事件D.“太阳东升西落”是必然事件8.已知不等式组的解集是x≥2,则a的取值范围是()A.a<2 B.a=2 C.a>2 D.a≤29.下面的图形是天气预报的图标,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.10.若分式的值为0,则的值是()A. B. C. D.11.若关于x的一元二次方程的两个根为x1=1,x2=2,则这个方程可能是()A.x2-3x+2=0 B.x2+3x+2=0 C.x2+3x-2=0 D.x2-2x+3=012.为了了解我市50000名学生参加初中毕业考试数学成绩情况,从中抽取了1名考生的成绩进行统计.下列说法:①这50000名学生的数学考试成绩的全体是总体;②每个考生是个体;③1名考生是总体的一个样本;④样本容量是1.其中说法正确的有()A.4个 B.3个 C.2个 D.1个二、填空题(每题4分,共24分)13.如图,Rt△ABC中,∠BAC=90°,AB=AC,将△ABC绕点C顺时针旋转40°,得到△,与AB相交于点D,连接,则∠的度数是________.14.化简:_________.15.如图,在中,,平分,点为中点,则_____.16.若整数m满足,且,则m的值为___________.17.如图,在中,,点分别是边的中点,延长到点,使,得四边形.若使四边形是正方形,则应在中再添加一个条件为__________.18.确定一个的值为________,使一元二次方程无实数根.三、解答题(共78分)19.(8分)数学兴趣小组研究某型号冷柜温度的变化情况,发现该冷柜的工作过程是:当温度达到设定温度℃时,制冷停止,此后冷柜中的温度开始逐渐上升,当上升到℃时,制冷开始,温度开始逐渐下降,当冷柜自动制冷至℃时,制冷再次停止,…,按照以上方式循环进行.同学们记录内9个时间点冷柜中的温度(℃)随时间变化情况,制成下表:时间…4810162021222324…温度/℃……(1)如图,在直角坐标系中,描出上表数据对应的点,并画出当时温度随时间变化的函数图象;(2)通过图表分析发现,冷柜中的温度是时间的函数.①当时,写出符合表中数据的函数解析式;②当时,写出符合表中数据的函数解析式;(3)当前冷柜的温度℃时,冷柜继续工作36分钟,此时冷柜中的温度是多少?20.(8分)如图,▱ABCD中E,F分别是AD,BC中点,AF与BE交于点G,CE和DF交于点H,求证:四边形EGFH是平行四边形.21.(8分)某校八年级(1)班要从班级里数学成绩较优秀的甲、乙两位学生中选拔一人参加“全国初中数学联赛”,为此,数学老师对两位同学进行了辅导,并在辅导期间测验了6次,测验成绩如下表(单位:分):次数,1,2,3,4,5,6甲:79,78,84,81,83,75乙:83,77,80,85,80,75利用表中数据,解答下列问题:(1)计算甲、乙测验成绩的平均数.(2)写出甲、乙测验成绩的中位数.(3)计算甲、乙测验成绩的方差.(结果保留小数点后两位)(4)根据以上信息,你认为老师应该派甲、乙哪名学生参赛?简述理由.22.(10分)市政规划出一块矩形土地用于某项目开发,其中,设计分区如图所示,为矩形内一点,作于点交于点,过点作交于点,其中丙区域用于主建筑区,其余各区域均用于不同种类绿化.若点是的中点,求的长;要求绿化占地面积不小于,规定乙区域面积为①若将甲区域设计成正方形形状,能否达到设计绿化要求?请说明理由;②若主建筑丙区域不低于乙区域面积的,则的最大值为(请直接写出答案)23.(10分)天坛是明清两代皇帝每年祭天和祈祷五谷丰收的地方,以其严谨的建筑布局、奇特的建筑构造和瑰丽的建筑装饰著称于世,被列为世界文化遗产.小惠同学到天坛公园参加学校组织的综合实践活动,她分别以正东,正北方向为x轴,y轴的正方向建立了平面直角坐标系描述各景点的位置.小惠:“百花园在原点的西北方向;表示回音壁的点的坐标为”请依据小惠同学的描述回答下列问题:请在图中画出小惠同学建立的平面直角坐标系;表示无梁殿的点的坐标为______;表示双环万寿亭的点的坐标为______;将表示祈年殿的点向右平移2个单位长度,再向下平移个单位长度,得到表示七星石的点,那么表示七星石的点的坐标是______.24.(10分)如图,在□ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD的中点,延长AE至G,使EG=AE,连接CG.(1)求证:△ABE≌△CDF;(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.25.(12分)如图,在▱ABCD中,∠BAD的角平分线交BC于点E,交DC的延长线于点F,连接DE.(1)求证:DA=DF;(2)若∠ADE=∠CDE=30°,DE=2,求▱ABCD的面积.26.已知,如图,∠C=90°,∠B=30°,AD是△ABC的角平分线.(1)求证:BD=2CD;(2)若CD=2,求△ABD的面积.

参考答案一、选择题(每题4分,共48分)1、A【解析】

由直线y=2x与线段AB有公共点,可得出点B在直线上或在直线右下方,利用一次函数图象上点的坐标特征,即可得出关于n的一元一次不等式,解之即可得出n的取值范围即可判断.【详解】∵直线y=2x与线段AB有公共点,∴2n≥3,∴n≥.∵1.4<,∴n的值不可能是1.4.故选A.【点睛】本题考查了一次函数图象上点的坐标特征,用一次函数图象上点的坐标特征,找出关于n的一元一次不等式是解题的关键.2、C【解析】

根据一次函数的定义可得k-2≠0,|k|-2=1,解答即可.【详解】一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.所以|k|-2=1,解得:k=±2,因为k-2≠0,所以k≠2,即k=-2.故选:C.【点睛】本题主要考查一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.3、C【解析】

试题分析:由二次根式的概念可知被开方数为非负数,由此有x-1≥0,所以x≥1,C正确考点:二次根式有意义的条件4、D【解析】解:∵∠B=∠DEF,AB=DE,∴添加∠A=∠D,利用ASA可得△ABC≌△DEF;∴添加BC=EF,利用SAS可得△ABC≌△DEF;∴添加∠ACB=∠F,利用AAS可得△ABC≌△DEF;故选D.点睛:本题考查了全等三角形的判定,掌握全等三角形的判定方法:SSS、ASA、SAS、AAS和HL是解题的关键.5、C【解析】试题分析:作F点关于BD的对称点F′,则PF=PF′,连接EF′交BD于点P.∴EP+FP=EP+F′P.由两点之间线段最短可知:当E、P、F′在一条直线上时,EP+FP的值最小,此时EP+FP=EP+F′P=EF′.∵四边形ABCD为菱形,周长为12,∴AB=BC=CD=DA=1,AB∥CD,∵AF=2,AE=1,∴DF=AE=1,∴四边形AEF′D是平行四边形,∴EF′=AD=1.∴EP+FP的最小值为1.故选C.考点:菱形的性质;轴对称-最短路线问题6、D【解析】

①实数和数轴上的点是一一对应的,正确;②无理数是开方开不尽的数,错误;③负数没有立方根,错误;④16的平方根是±4,用式子表示是±=±4,错误;⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0,正确.错误的一共有3个,故选D.7、C【解析】

根据随机事件和确定事件以及不可能事件和必然事件的概念即可解答.【详解】A、“买一张彩票中大奖”是随机事件,正确,不合题意;B、不可能事件和必然事件都是确定事件,正确,不合题意;C、“穿十条马路连遇十次红灯”是不可能事件,错误,符合题意;D、太阳东升西落”是必然事件,正确,不合题意.故选:C.【点睛】本题考查了随机事件,确定事件,不可能事件,必然事件的概念,正确理解概念是解题的关键.8、B【解析】

解不等式①可得出x≥,结合不等式组的解集为x≥1即可得出a=1,由此即可得出结论.【详解】,∵解不等式①得:x≥,又∵不等式组的解集是x≥1,∴a=1.故选B.【点睛】本题考查了解一元一次不等式组,熟练掌握解一元一次不等式组的方法及步骤是解题的关键.9、A【解析】试题分析:根据轴对称图形与中心对称图形的概念求解,解答轴对称图形问题的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;解答中心对称图形问题的关键是要寻找对称中心,旋转180度后与原图重合.A、是轴对称图形,也是中心对称图形,故正确;B、不是轴对称图形,也不是中心对称图形,故错误;C、是轴对称图形,不是中心对称图形,故错误;D、不是轴对称图形,也不是中心对称图形,故错误.考点:1.中心对称图形;2.轴对称图形.10、A【解析】

解:根据分式为0的条件,要使分式的值为0,必须.解得故选A.11、A【解析】

先计算出x1+x2=3,x1x2=2,然后根据根与系数的关系得到满足条件的方程可为x2-3x+2=1.【详解】解:∵x1=1,x2=2,

∴x1+x2=3,x1x2=2,

∴以x1,x2为根的一元二次方程可为x2-3x+2=1.

故选A.【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=1(a≠1)的两根时,x1+x2=−,x1x2=.12、C【解析】

总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】①这50000名学生的数学考试成绩的全体是总体,说法正确;②每个考生是个体,说法错误,应该是每个考生的数学成绩是个体;③1名考生是总体的一个样本,说法错误,应是1名考生的数学成绩是总体的一个样本;④样本容量是1,说法正确;正确的说法共2个.故选C.【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.二、填空题(每题4分,共24分)13、20【解析】

由旋转的性质可得AC=A'C,∠ACA'=40°,∠BAC=∠B'A'C=90°,由等腰三角形的性质可得∠AA'C=70°=∠A'AC,即可求解.【详解】∵将△ABC绕点C顺时针旋转40°得到△A'B'C,∴△ABC≌△A'B'C∴AC=A'C,∠ACA′=40°,∠BAC=∠B'A'C=90°∴∠AA'C=70°=∠A'AC∴∠B'A'A=∠B'A'C−∠AA'C=20°.【点睛】本题考查全等三角形的判定与性质,等腰直角三角形,旋转的性质.旋转前后对应线段相等,对应角相等,对应图形全等.在旋转过程中,一定要仔细读题,能理解∠ACA′即为旋转角等于40°,AC和A'C为一组对应线段.14、【解析】

分子分母同时约去公因式5xy即可.【详解】解:.

故答案为.【点睛】此题主要考查了分式的约分,关键是找出分子分母的公因式.15、1【解析】

根据等腰三角形的三线合一得到∠ADC=90°,根据直角三角形的性质计算即可.【详解】解:∵AB=AC,AD平分∠BAC,

∴AD⊥BC,

∴∠ADC=90°,点E为AC中点,

∴DE=AC=1,

故答案为:1.【点睛】本题考查的是直角三角形的性质、等腰三角形的性质,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.16、,,.【解析】

由二次根式的性质,得到,结合,即可求出整数m的值.【详解】解:∵,∴,∴,∵,∴,∴整数m的值为:,,;故答案为:,,.【点睛】本题考查了二次根式的性质,以及解一元一次不等式,解题的关键是熟练掌握二次根式的性质,正确得到m的取值范围.17、答案不唯一,如∠ACB=90°或∠BAC=45°或∠B=45°【解析】

先证明四边形ADCF是平行四边形,再证明AC=DF即可,再利用∠ACB=90°得出答案即可.【详解】∠ACB=90°时,四边形ADCF是正方形,理由:∵E是AC中点,∴AE=EC,∵DE=EF,∴四边形ADCF是平行四边形,∵AD=DB,AE=EC,∴DE=BC,∴DF=BC,∵CA=CB,∴AC=DF,∴四边形ADCF是矩形,点D.E分别是边AB、AC的中点,∴DE//BC,∵∠ACB=90°,∴∠AED=90°,∴矩形ADCF是正方形.故答案为∠ACB=90°.【点睛】此题考查正方形的判定,解题关键在于掌握判定法则18、【解析】

根据方程无实数根求出b的取值范围,再确定b的值即可.【详解】∵一元二次方程x2+2bx+1=0无实数根,∴4b2-4<0∴-1<b<1,因此,b可以取等满足条件的值.【点睛】此题考查了一元二次方程根的判别式的应用.此题难度不大,解题的关键是掌握当△<0时,一元二次方程没有实数根.三、解答题(共78分)19、(1)见详解;(2)①y=;②y=-4x+1;(3)-4°.【解析】

(1)根据表格内容描点、画图、连线即可.(2)①由x·y=-80,即可得出当4≤x<20时,y关于x的函数解析式;②根据点(20,-4)、(21,-8),利用待定系数法求出y关于x的函数解析式,再代入其它点的坐标验证即可.(3)根据表格数据,找出冷柜的工作周期为20分钟,由此即可得出答案.【详解】(1)如图所示:(2)①根据图象可知,图象接近反比例函数图象的一部分,设y=,过点(8,-10),∴k=-80,∴y=(4≤x<20).②根据图象可知,图象接近直线,设y=kx+b,过点(20,-4),(21,-8),∴y=-4x+1.(3)∵因温度的变化,20分钟一个周期,∴36=20+16∴冷柜连续工作36分钟时,在反比例函数变化范围内,故温度为-4°.【点睛】本题主要考查一次函数和反比例的解析式,以及应用.20、证明见解析【解析】

可分别证明四边形AFCE是平行四边形,四边形BFDE是平行四边形,从而得出GF∥EH,GE∥FH,即可证明四边形EGFH是平行四边形.【详解】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∵AE=12AD,FC=12∴AE∥FC,AE=FC.∴四边形AECF是平行四边形.∴GF∥EH.同理可证:ED∥BF且ED=BF.∴四边形BFDE是平行四边形.∴GE∥FH.∴四边形EGFH是平行四边形.【点睛】考查了平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.21、(1)80分,80分;(2)80分;(3)9.33,11.33;(4)派甲去.【解析】试题分析:本题考查了方差,算术平均数,中位数的计算.(1)由平均数的计算公式计算甲、乙测试成绩的平均分;(2)将一组数据从小到大(或从大到小)重新排列后,中间两个数的平均数是甲、乙测试成绩的中位数;(3)由方差的计算公式计算甲、乙测试成绩的方差;(4)方差越小,表明这个同学的成绩偏离平均数越小,即波动越小,成绩越稳定.解:(1)x甲=(分),x乙=(分).(2)甲、乙测验成绩的中位数都是80分.(3)=[(79-80)2+(78-80)2+(84-80)2+(81-80)2+(83-80)2+(75-80)2]≈9.33,=[(83-80)2+(77-80)2+(80-80)2+(85-80)2+(80-80)2+(75-80)2]≈11.33.(4)结合以上信息,应该派甲去,因为在平均数和中位数都相同的情况下,甲的测验成绩更稳定.22、(1)90m;(2)①能达到设计绿化要求,理由见解析,②40【解析】

(1)首先理由矩形性质得出AD=BC=180m,AB∥CD,AD∥BC,进一步证明出四边形AFEG与四边形DGEH为矩形,四边形BIHE为平行四边形,由此得出AG=EF,DG=EH,EH=BI,据此进一步求解即可;(2)①设正方形AFEG边长为m,根据题意列出方程,然后进一步求解再加以分析即可;②设AF=m,则EH=m,然后结合题意列出不等式,最后再加以求解即可.【详解】(1)∵四边形ABCD为矩形,∴AD=BC=180m,AB∥CD,AD∥BC,∵EG⊥AD,EH∥BC,HI∥BE,∴四边形AFEG与四边形DGEH为矩形,四边形BIHE为平行四边形,∴AG=EF,DG=EH,EH=BI,∵点G为AD中点,∴DG=AD=90m,∴BI=EH=DG=90m;(2)①能达到设计绿化要求,理由如下:设正方形AFEG边长为m,由题意得:,解得:,当时,EH=m,则EF=180−150=30m,符合要求,∴若将甲区域设计成正方形形状,能达到设计绿化要求;②设AF=m,则EH=m,由题意得:,解得:,即AF的最大值为40m,故答案为:40.【点睛】本题主要考查了四边形与一元一次方程及一元一次不等式的综合运用,熟练掌握相关方法是解题关键.23、画平面直角坐标系见解析;,;.【解析】

(1)直接利用回音壁的点的坐标为(0,-2),得出原点位置,建立平面直角坐标系即可;(2)利用所画平面直角坐标系得出各点坐标即可;(3)利用平移的性质得出七星石的点的坐标.【详解】画出平面直角坐标系如图;表示无梁殿的点的坐标为点;表示双环万寿亭的点的坐标为;故答案为,;表示七星石的点的坐标是.故答案为.【点睛】本题考查了平移变换以及用坐标表示地理位置,正确建立平面直角坐标系是解题的关键.24、(1)见解析;(2)时,四边形EGCF是矩形,理由见解析.【解析】

(1)由平行四边形的性质得出AB=CD,AB∥CD,OB=OD,OA=OC,由平行线的性质得出∠ABE=∠CDF,证出BE=DF,由SAS证明△ABE≌△CDF即可;(2)证出AB=OA,由等腰三角形的性质得出AG⊥OB,∠OEG=90°,同理:CF⊥OD,得出EG∥CF,由三角形中位线定理得出OE∥CG,EF∥CG,得出四边形EGCF是平行四边形,即可得出结论.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,OB=OD,OA=OC,∴∠ABE=∠CDF,∵点E,F分别为OB,OD的中点,∴BE=OB,DF=OD,∴BE=DF,在△ABE和△CDF中,(2)当AC=2AB时,四边形EGCF是矩形;理由如下:∵AC=2OA,AC=2AB,∴AB=OA,∵E是OB的中点,∴AG

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论