江苏省泰州白马中学2024年八年级数学第二学期期末质量检测试题含解析_第1页
江苏省泰州白马中学2024年八年级数学第二学期期末质量检测试题含解析_第2页
江苏省泰州白马中学2024年八年级数学第二学期期末质量检测试题含解析_第3页
江苏省泰州白马中学2024年八年级数学第二学期期末质量检测试题含解析_第4页
江苏省泰州白马中学2024年八年级数学第二学期期末质量检测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省泰州白马中学2024年八年级数学第二学期期末质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.关于x的一元二次方程(k﹣1)x2﹣2x+3=0有两个实数根,则k的取值范围是()A.k≤且k≠1 B.k≤ C.k<且k≠1 D.k<2.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为()A.(,1) B.(2,1)C.(2,) D.(1,)3.为了解我市参加中考的15000名学生的视力情况,抽查了1000名学生的视力进行统计分析,下面四个判断正确的是()A.15000名学生是总体B.1000名学生的视力是总体的一个样本C.每名学生是总体的一个个体D.以上调查是普查4.一个多边形的每一个外角都等于它相邻的内角的一半,则这个多边形的边数是()A.3 B.4 C.5 D.65.下列运算正确的是()A. B. C. D.6.甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A地到B地,乙驾车从B地到A地,他们分别以不同的速度匀速行驶.已知甲先出发6分钟后,乙才出发,在整个过程中,甲、乙两人的距离y(千米)与甲出发的时间x(分)之间的关系如图所示,当乙到达终点A时,甲还需()分钟到达终点B.A.78 B.76 C.16 D.127.有位同学参加歌咏比赛,所得的分数互不相同,取得分前位同学进入决赛,小明知道自己的分数后,要判断自己能否进入决赛,他只需知道这位同学得分的()A.平均数 B.中位数 C.众数 D.方差8.某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如表:尺码3940414243平均每天销售数量(件)1012201212该店主决定本周进货时,增加了一些

尺码的衬衫,影响该店主决策的统计量是()A.众数 B.方差 C.平均数 D.中位数9.若关于x的方程是一元二次方程,则m的取值范围是()A.. B.. C. D..10.如果一次函数y=kx+b(k、b是常数)的图象不经过第二象限,那么k、b应满足的条件是()A.k>0,且b≤0 B.k<0,且b>0 C.k>0,且b≥0 D.k<0,且b<011.如图,矩形ABCD的两条对角线相交于点O,CE垂直平分DO,,则BE等于A. B. C. D.212.计算(5﹣﹣2)÷(﹣)的结果为()A.﹣5 B.5 C.7 D.﹣7二、填空题(每题4分,共24分)13.如图,已知矩形的长和宽分别为4和3,、,,依次是矩形各边的中点,则四边形的周长等于______.14.如图,在△ABC中,D,E分别是边AB,AC的中点,若BC=6,则DE=_______.15.计算:=___________.16.不等式的非负整数解为_____.17.如图,在边长相同的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB,CD相交于点P,则△PBD与△PAC的面积比为_____.18.某校对n名学生的体育成绩统计如图所示,则n=_____人.三、解答题(共78分)19.(8分)如图,在△ABC中,∠B=90°,AB=6cm,BC=8cm,动点P从点A开始沿AB边向B以1cm/s的速度移动(不与点B重合);动点Q从B点开始沿BC边向点C以2cm/s的速度移动(不与点C重合).如果P、Q分别从A、B同时出发,出发多少秒后,四边形APQC的面积为16cm2?20.(8分)二次根式计算:(1);(2);(3)()÷;(4).21.(8分)如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,AD平分∠CAB交BC于点D,CD=1,延长AC到E,使AE=AB,连接DE,BE.(1)求BD的长;(2)求证:DA=DE.22.(10分)某花卉种植基地准备围建一个面积为100平方米的矩形苗圃园园种植玫瑰花,其中一边靠墙,另外三边用29米长的篱笆围成.已知墙长为18米,为方便进入,在墙的对面留出1米宽的门(如图所示),求这个苗圃园垂直于墙的一边长为多少米?23.(10分)如图,△ABC中,∠ACB=90°,AC=CB=2,以BC为边向外作正方形BCDE,动点M从A点出发,以每秒1个单位的速度沿着A→C→D的路线向D点匀速运动(M不与A、D重合);过点M作直线l⊥AD,l与路线A→B→D相交于N,设运动时间为t秒:(1)填空:当点M在AC上时,BN=(用含t的代数式表示);(2)当点M在CD上时(含点C),是否存在点M,使△DEN为等腰三角形?若存在,直接写出t的值;若不存在,请说明理由;(3)过点N作NF⊥ED,垂足为F,矩形MDFN与△ABD重叠部分的面积为S,求S的最大值.24.(10分)已知:如图,在矩形ABCD中,∠ABD、∠CDB的平分线BE、DF分别交AD、BC于点E,F,求证:BE=DF.25.(12分)学校新到一批实验器材需要整理,若实验管理员李老师一人单独整理需要40分钟完成,现在李老师与工人王师傅共同整理20分钟后,李老师因事外出,王师傅再单独整理了20分钟才完成任务.(1)王师傅单独整理这批实验器材需要多少分钟完成;(2)学校要求王师傅的工作时间不能超过30分钟,要完成整理这批器材,李老师至少要工作多少分钟?26.如图,平行四边形中,,,、分别是、上的点,且,连接交于.(1)求证:;(2)若,延长交的延长线于,当,求的长.

参考答案一、选择题(每题4分,共48分)1、A【解析】

根据一元二次方程的定义和根的判别式的意义可得,然后求出两个不等式的公共部分即可.【详解】解:根据题意得解得所以k的范围为故选A.【点睛】本题考查了一元二次方程的根的判别式:当,方程有两个不相等的实数根;当,方程有两个相等的实数根;,方程没有实数根,熟知这些是解题关键.2、C【解析】

由已知条件得到AD′=AD=2,AO=AB=1,根据勾股定理得到OD′=,于是得到结论.【详解】解:∵AD′=AD=2,AO=AB=1,OD′=,∵C′D′=2,C′D′∥AB,

∴C′(2,),

故选D.【点睛】本题考查了正方形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题的关键.3、B【解析】

总体是参加中考的15000名学生的视力情况,故A错误;1000名学生的视力是总体的一个样本,故B正确;每名学生的视力情况是总体的一个样本,故C错误;以上调查应该是抽查,故D错误;故选B.4、D【解析】

先根据多边形的内角和外角的关系,求出一个外角.再根据外角和是固定的310°,从而可代入公式求解.【详解】解:设多边形的一个内角为2x度,则一个外角为x度,依题意得

2x+x=180°,

解得x=10°.

310°÷10°=1.

故这个多边形的边数为1.

故选D.【点睛】本题考查了多边形的内角与外角关系、方程的思想,记住多边形的一个内角与外角互补、及外角和的特征是关键.5、D【解析】

根据二次根式的计算法则对各个选项一一进行计算即可判断出答案.【详解】A.不是同类二次根式,不能合并,故A错误;B.,故B错误;C.,故C错误;D.故D正确.故选D.【点睛】本题考查了二次根式的运算.熟练应用二次根式的计算法则进行正确计算是解题的关键.6、A【解析】

根据路程与时间的关系,可得甲乙的速度,根据相遇前甲行驶的路程除以乙行驶的速度,可得乙到达A站需要的时间,根据相遇前乙行驶的路程除以甲行驶的速度,可得甲到达B站需要的时间,再根据有理数的减法,可得答案.【详解】解:由纵坐标看出甲先行驶了1千米,由横坐标看出甲行驶1千米用了6分钟,甲的速度是千米/分钟,由纵坐标看出AB两地的距离是16千米,设乙的速度是x千米/分钟,由题意,得,解得x=千米/分钟,相遇后乙到达A站还需=2分钟,相遇后甲到达B站还需分钟,当乙到达终点A时,甲还需80-2=78分钟到达终点B,故选:A.【点睛】本题考查了函数图象,利用同路程与时间的关系得出甲乙的速度是解题关键.7、B【解析】

由中位数的概念,即最中间一个或两个数据的平均数;可知9人成绩的中位数是第5名的成绩.根据题意可得:参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】解:由于9个人中,第5名的成绩是中位数,故小明同学知道了自己的分数后,想知道自己能否进入决赛,需知道这9位同学的分数的中位数.

故选:B.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.8、A【解析】

平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.销量大的尺码就是这组数据的众数.【详解】解:由于众数是数据中出现次数最多的数,故影响该店主决策的统计量是众数.故选:A.【点睛】本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.掌握以上知识是解题的关键.9、A【解析】

根据一元二次方程的定义可得m﹣1≠0,再解即可.【详解】由题意得:m﹣1≠0,解得:m≠1,故选A.【点睛】此题主要考查了一元二次方程的定义,关键是掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.10、A【解析】分析:由一次函数图象不经过第二象限可得出该函数图象经过第一、三象限或第一、三、四象限,再利用一次函数图象与系数的关系,即可找出结论.详解:∵一次函数y=kx+b(k、b是常数)的图象不经过第二象限,∴一次函数y=kx+b(k、b是常数)的图象经过第一、三象限或第一、三、四象限,当一次函数y=kx+b(k、b是常数)的图象经过第一、三象限时,k>0,b=0;当一次函数y=kx+b(k、b是常数)的图象经过第一、三、四象限时,k>0,b<0.综上所述:k>0,b⩽0.故选A.点睛:本题考查了一次函数图象与系数的关系,分一次函数图象过一、三象限和一、三、四象限两种情况进行分析.11、A【解析】

根据矩形的性质可证明,都是等边三角形,根据等边三角形的性质即可求出OE的长,即可的答案;【详解】四边形ABCD是矩形,,垂直平分相等OD,,,,都是等边三角形,,OD=,,故选A.【点睛】本题考查矩形的性质、等边三角形的判断和性质、线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.12、C【解析】

先把二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算.【详解】解:原式=(﹣2﹣6)÷(﹣)=﹣1÷(﹣)=1.故选:C.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.二、填空题(每题4分,共24分)13、1【解析】

直接利用矩形的性质结合勾股定理得出EF,FG,EH,HG的长即可得出答案.【详解】∵矩形ABCD的长和宽分别为4和3,E、F、G、H依次是矩形ABCD各边的中点,∴AE=BE=CG=DG=1.5,AH=DH=BF=FC=2,∴EH=EF=HG=GF=,∴四边形EFGH的周长等于4×2.5=1故答案为1.【点睛】此题主要考查了中点四边形以及勾股定理,正确应用勾股定理是解题关键.14、1.【解析】试题分析:由D、E分别是AB、AC的中点可知,DE是△ABC的中位线,利用三角形中位线定理可求出ED=BC=1.故答案为1.考点:三角形中位线定理.15、【解析】

解:2-=故答案为:16、0,1,1【解析】

首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的非负整数即可.【详解】解不等式得:,∴不等式的非负整数解为0,1,1.故答案为:0,1,1.【点睛】本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.17、1:1【解析】以点A为原点,建立平面直角坐标系,则点B(3,1),C(3,0),D(2,1),如下图所示:设直线AB的解析式为yAB=kx,直线CD的解析式为yCD=ax+b,∵点B在直线AB上,点C、D在直线CD上,∴1=3k,解得:k=,,∴yAB=x,yCD=-x+3,∴点P的坐标为(,),∴S△PBD:S△PAC=.故答案是:1:1.18、1【解析】

根据统计图中的数据,可以求得n的值,本题得以解决.【详解】解:由统计图可得,n=20+30+10=1(人),故答案为:1.【点睛】本题考查折线统计图,解答本题的关键是明确题意,提取统计图中的有效信息解答.三、解答题(共78分)19、1【解析】

根据题意表示出四边形APQC的面积,进而得出方程求出答案.【详解】解:设t秒后,四边形APQC的面积为16cm1,

由题意得:S△ABC=×6×8=14(cm1),BP=6-t,BQ=1t,

∴14-•1t(6-t)=16,

解得:t1=1,t1=4,

当t=4时,BQ=1×4=8,

∵Q不与点C重合,

∴t=4不合题意舍去,

所以1秒后,四边形APQC的面积为16cm1.【点睛】此题主要考查了一元二次方程的应用,正确得出等量关系列出方程是解题关键.20、(1)8;(2);(3);(4)1.【解析】

(1)首先化简二次根式,进而利用二次根式加减运算法则得出答案;(2)首先化简二次根式,进而利用二次根式加减运算法则得出答案;(3)首先化简二次根式,进而利用二次根式除法运算法则得出答案;(4)直接利用平方差公式计算得出答案.【详解】(1)=3+5=8;(2),=,=;(3)()÷==;(4),=,=12﹣1,=1.【点睛】此题考查二次根式的加减法计算,混合运算,乘法公式,将每个二次根式正确化简成最简二次根式,再根据运算法则进行计算.21、(1)BD=1;(1)证明见解析.【解析】

(1)根据题意可知∠CAB=60°,想办法证明DA=DB=1CD即可;(1)由题意可知三角形ABE是等边三角形,然后在证明Rt△DCA≌Rt△DCE,即可求证.【详解】(1)∵在Rt△ABC中,∠ACB=90°,∠ABC=30°,AD平分∠CAB,∴∠CAB=60°=1×∠CAD,∴∠CAD=∠DAB=30°;,∴∠DAB=∠DBA=30°,∴BD=DA=1CD=1.(1)∵AE=AB,在Rt△ABC中,∠ACB=90°,∠B=30°,∴∠EAB=60°,∴△ABE是等边三角形,∵BC⊥AE,∴AC=CE,∵∠ACD=∠DCE=90°,CD=CD,∴Rt△DCA≌Rt△DCE(SAS),∴DA=DE.【点睛】本题主要考查了含30°角的直角三角形,解题的关键是掌握角平分线的性质以及等边三角形的性质,此题难度不大.22、10米【解析】

设这个苗圃园垂直于墙的一边长为x米,则平行于墙的一边为(29+1-2x)米,根据此矩形苗圃园面积为100平方米列一元二次方程求解可得答案.【详解】解:设这个苗圃园垂直于墙的一边长为x米,则平行于墙的一边为(29+1-2x)米,由题意得:x(30-2x)=100,-2x+30x-100=0,x-15x+50=0(x-5)(x-10)=0,或,当x=5时,则平行于墙的一边为20米>18米,不符合题意,取x=10,答:垂直于墙的一边长为10米.【点睛】本题主要考查一元二次方程的应用,根据已知条件列出方程式解题的关键.23、(1)BN=2﹣t;(2)当t=4﹣或t=3或t=2时,△DNE是等腰三角形;(3)当t=时,S取得最大值.【解析】

(1)由等腰直角三角形的性质知AB=2,MN=AM=t,AN=﹣AM=﹣t,据此可得;(2)先得出MN=DM=4﹣t,BP=PN=t﹣2,PE=4﹣t,由勾股定理得出NE=,再分DN=DE,DN=NE,DE=NE三种情况分别求解可得;(3)分0≤t<2和2≤t≤4两种情况,其中0≤t<2重合部分为直角梯形,2≤t≤4时重合部分为等腰直角三角形,根据面积公式得出面积的函数解析式,再利用二次函数的性质求解可得.【详解】(1)如图1,∵∠ACB=90°,AC=BC=2,∴∠A=∠ABC=45°,AB=2,∵AM=t,∠AMN=90°,∴MN=AM=t,AN=AM=t,则BN=AB﹣AN=故答案为(2)如图2,∵AM=t,AC=BC=CD=2,∠BDC=∠DBE=45°,∴DM=MN=AD﹣AM=4﹣t,∴DN=DM=(4﹣t),∵PM=BC=2,∴PN=2﹣(4﹣t)=t﹣2,∴BP=t﹣2,∴PE=BE﹣BP=2﹣(t﹣2)=4﹣t,则NE=,∵DE=2,∴①若DN=DE,则(4﹣t)=2,解得t=4﹣;②若DN=NE,则(4﹣t)=,解得t=3;③若DE=NE,则2=,解得t=2或t=4(点N与点E重合,舍去);综上,当t=4﹣或t=3或t=2时,△DNE是等腰三角形.(3)①当0≤t<2时,如图3,由题意知AM=MN=t,则CM=NQ=AC﹣AM=2﹣t,∴DM=CM+CD=4﹣t,∵∠ABC=∠CBD=45°,∠NQB=∠GQB=90°,∴NQ=BQ=QG=2﹣t,则NG=4﹣2t,∴当t=时,S取得最大值;②当2≤t≤4时,如图4,∵AM=t,AD=AC+CD=4,∴DM=AD﹣AM=4﹣t,∵∠DMN=90°,∠CDB=45°,∴MN=DM=4﹣t,∴S=(4﹣t)2=(t﹣4)2,∵2≤t≤4,∴当t=2时,S取得最大值2;综上,当t=时,S取得最大值.【点睛】本题是四边形的综合问题,解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论