![湖北省荆州市2023-2024学年数学九上期末教学质量检测模拟试题含解析_第1页](http://file4.renrendoc.com/view11/M00/08/18/wKhkGWX6GSaAfrYqAAHq_cE2R_g499.jpg)
![湖北省荆州市2023-2024学年数学九上期末教学质量检测模拟试题含解析_第2页](http://file4.renrendoc.com/view11/M00/08/18/wKhkGWX6GSaAfrYqAAHq_cE2R_g4992.jpg)
![湖北省荆州市2023-2024学年数学九上期末教学质量检测模拟试题含解析_第3页](http://file4.renrendoc.com/view11/M00/08/18/wKhkGWX6GSaAfrYqAAHq_cE2R_g4993.jpg)
![湖北省荆州市2023-2024学年数学九上期末教学质量检测模拟试题含解析_第4页](http://file4.renrendoc.com/view11/M00/08/18/wKhkGWX6GSaAfrYqAAHq_cE2R_g4994.jpg)
![湖北省荆州市2023-2024学年数学九上期末教学质量检测模拟试题含解析_第5页](http://file4.renrendoc.com/view11/M00/08/18/wKhkGWX6GSaAfrYqAAHq_cE2R_g4995.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省荆州市2023-2024学年数学九上期末教学质量检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,在Rt△ABC中,∠BAC=90º,AH是高,AM是中线,那么在结论①∠B=∠BAM,②∠B=∠MAH,③∠B=∠CAH中错误的个数有()A.0个 B.1个 C.2个 D.3个2.已知三角形的周长为12,面积为6,则该三角形内切圆的半径为()A.4 B.3 C.2 D.13.已知二次函数的与的部分对应值如表:下列结论:①抛物线的开口向上;②抛物线的对称轴为直线;③当时,;④抛物线与轴的两个交点间的距离是;⑤若是抛物线上两点,则;⑥.其中正确的个数是()A. B. C. D.4.如图,电线杆的高度为,两根拉线与相互垂直,,则拉线的长度为(、、在同一条直线上)()A. B. C. D.5.下列图形中,既是中心对称图形,又是轴对称图形的是()A.等边三角形 B.平行四边形 C.等腰三角形 D.菱形6.抛物线的图象先向右平移2个单位,再向下平移3个单位,所得图象的函数解析式为,则b、c的值为A.b=2,c=﹣6 B.b=2,c=0 C.b=﹣6,c=8 D.b=﹣6,c=27.将抛物线向上平移个单位长度,再向右平移个单位长度,所得到的抛物线为()A. B.C. D.8.如图,已知⊙O中,半径OC垂直于弦AB,垂足为D,若OD=3,OA=5,则AB的长为()A.2 B.4 C.6 D.89.若关于的一元二次方程有实数根,则实数m的取值范围是()A. B. C. D.10.点A、B、C是平面内不在同一条直线上的三点,点D是平面内任意一点,若A、B、C、D四点恰能构成一个平行四边形,则在平面内符合这样条件的点D有()A.1个 B.2个 C.3个 D.4个二、填空题(每小题3分,共24分)11.经过点的反比例函数的解析式为__________.12.二次函数的最小值是.13.在等边三角形中,于点,点分别是上的动点,沿所在直线折叠后点落在上的点处,若是等腰三角形,则____.14.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5m,CD=8m,则树高AB=▲.15.如图,甲、乙两楼之间的距离为30米,从甲楼测得乙楼顶仰角为α=30°,观测乙楼的底部俯角为β=45°,乙楼的高h=_____米(结果保留整数≈1.7,≈1.4).16.已知△ABC与△DEF相似,相似比为2:3,如果△ABC的面积为4,则△DEF的面积为_____.17.已知正比例函数的图像与反比例函数的图像有一个交点的坐标是,则它们的另一个交点坐标为_________.18.把一副普通扑克牌中的13张红桃牌洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的牌上的数字是3的倍数的概率为______.三、解答题(共66分)19.(10分)如图,是的直径,点在上,平分,是的切线,与相交于点,与相交于点,连接.(1)求证:;(2)若,,求的长.20.(6分)如图,已知正方形ABCD中,BE平分∠DBC且交CD边于点E,将△BCE绕点C顺时针旋转到△DCF的位置,并延长BE交DF于点G(1)求证:△BDG∽△DEG;(2)若EG•BG=4,求BE的长.21.(6分)如图,已知:的长等于________;若将向右平移个单位得到,则点的对应点的坐标是________;若将绕点按顺时针方向旋转后得到,则点对应点的坐标是________.22.(8分)九年级(1)班课外活动小组利用标杆测量学校旗杆的高度,已知标杆高度CD=3m,标杆与旗杆的水平距离BD=15m,人的眼睛与地面的高度EF=1.6m,人与标杆CD的水平距离DF=2m,求旗杆AB的高度.23.(8分)青青草原上,灰太狼每天都想着如何抓羊,而且是屡败屡试,永不言弃.(如图所示)一天,灰太狼在自家城堡顶部A处测得懒羊羊所在地B处的俯角为60°,然后下到城堡的C处,测得B处的俯角为30°.已知AC=50米,若灰太狼以5米/秒的速度从城堡底部D处出发,几秒钟后能抓到懒羊羊?(结果保留根号)24.(8分)已知菱形的两条对角线长度之和为40厘米,面积S(单位:cm2)随其中一条对角线的长x(单位:cm)的变化而变化.(1)请直接写出S与x之间的函数关系式,并写出自变量x的取值范围.(2)当x取何值时,菱形的面积最大,最大面积是多少?25.(10分)某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.(1)降价前商场每月销售该商品的利润是多少元?(2)要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?26.(10分)如图,在以线段AB为直径的⊙O上取一点,连接AC、BC,将△ABC沿AB翻折后得到△ABD
(1)试说明点D在⊙O上;(2)在线段AD的延长线上取一点E,使AB2=AC·AE,求证:BE为⊙O的切线;(3)在(2)的条件下,分别延长线段AE、CB相交于点F,若BC=2,AC=4,求线段EF的长.
参考答案一、选择题(每小题3分,共30分)1、B【分析】根据直角三角形斜边上的中线性质和等腰三角形的性质得出∠B=∠BAM,根据已知条件判断∠B=∠MAH不一定成立;根据三角形的内角和定理及余角的性质得出∠B=∠CAH.【详解】①∵在Rt△ABC中,∠BAC=90°,AH是高,AM是中线,∴AM=BM,∴∠B=∠BAM,①正确;②∵∠B=∠BAM,不能判定AM平分∠BAH,∴∠B=∠MAH不一定成立,②错误;③∵∠BAC=90°,AH是高,∴∠B+∠BAH=90°,∠CAH+∠BAH=90°,∴∠B=∠CAH,③正确.故选:B.【点睛】本题主要考查对直角三角形斜边上的中线性质,三角形的内角和定理,等腰三角形的性质等知识点的理解和掌握,能根据这些性质进行推理是解此题的关键.2、D【分析】设内切圆的半径为r,根据公式:,列出方程即可求出该三角形内切圆的半径.【详解】解:设内切圆的半径为r解得:r=1故选D.【点睛】此题考查的是根据三角形的周长和面积,求内切圆的半径,掌握公式:是解决此题的关键.3、B【分析】先利用待定系数法求出抛物线解析式,则可对①进行判断;求出抛物线的对称轴则可对②进行判断;利用抛物线与x轴的两个交点可对③④进行判断;根据二次函数的增减性可对⑤进行判断;根据a、b、c的具体数值可对⑥进行判断.【详解】解:由表格可知:抛物线与x轴的交点坐标为(0,0),(4,0),∴设抛物线解析式为y=ax(x﹣4),把(﹣1,5)代入得:5=a×(﹣1)×(﹣1﹣4),解得a=1,∴抛物线解析式为y=x2﹣4x,所以①正确;∵(0,0)与(4,0)关于抛物线的对称轴对称,∴抛物线的对称轴为直线x=2,所以②正确;∵抛物线的开口向上,且与x轴交于点(0,0)、(4,0),∴当0<x<4时,y<0,所以③错误;抛物线与x轴的两个交点(0,0)与(4,0)间的距离是4,所以④正确;若A(x1,2),B(x2,3)是抛物线上两点,则,所以x1与x2的大小不能确定,所以⑤错误;∵a=1,b=-4,c=0,∴,所以⑥错误.综上,正确的个数有3个,故选:B.【点睛】本题考查了二次函数的性质、待定系数法求二次函数的解析式、抛物线与x轴的交点以及二次函数与不等式等知识,属于常见题型,熟练掌握二次函数的性质是解题的关键.4、B【分析】先通过等量代换得出,然后利用余弦的定义即可得出结论.【详解】故选:B.【点睛】本题主要考查解直角三角形,掌握余弦的定义是解题的关键.5、D【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴;中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,针对每一个选项进行分析.【详解】解:A、是轴对称图形,不是中心对称图形.故此选项错误;B、不是轴对称图形,是中心对称图形.故此选项错误;C、是轴对称图形,不是中心对称图形.故此选项错误;D、是轴对称图形,也是中心对称图形.故此选项正确;故选D.6、B【详解】函数的顶点坐标为(1,﹣4),∵函数的图象由的图象向右平移2个单位,再向下平移3个单位得到,∴1﹣2=﹣1,﹣4+3=﹣1,即平移前的抛物线的顶点坐标为(﹣1,﹣1).∴平移前的抛物线为,即y=x2+2x.∴b=2,c=1.故选B.7、B【分析】根据“左加右减”,“上加下减”的平移规律即可得出答案.【详解】将抛物线向上平移个单位长度,再向右平移个单位长度,所得到的抛物线为故选:B.【点睛】本题考查二次函数图象的平移,熟练掌握平移规律是解题的关键.8、D【解析】利用垂径定理和勾股定理计算.【详解】根据勾股定理得,根据垂径定理得AB=2AD=8故选:D.【点睛】考查勾股定理和垂径定理,熟练掌握垂径定理是解题的关键.9、B【分析】因为一元二次方程有实数根,所以,即可解得.【详解】∵一元二次方程有实数根∴解得故选B【点睛】本题考查一元二次方程根的判别式,掌握方程根的个数与根的判别式之间关系是解题关键.10、C【解析】试题分析:由题意画出图形,在一个平面内,不在同一条直线上的三点,与D点恰能构成一个平行四边形,符合这样条件的点D有3个.故选C.考点:平行四边形的判定二、填空题(每小题3分,共24分)11、【分析】设出反比例函数解析式解析式,然后利用待定系数法列式求出k值,即可得解.【详解】设反比例函数解析式为,则,解得:,∴此函数的解析式为.故答案为:.【点睛】本题考查了待定系数法求反比例函数解析式及特殊角的三角函数值,设出函数的表达式,然后把点的坐标代入求解即可,比较简单.12、﹣1.【解析】试题分析:∵=,∵a=1>0,∴x=﹣2时,y有最小值=﹣1.故答案为﹣1.考点:二次函数的最值.13、,或【分析】根据等边三角形的性质,得到CD=3,BD=,∠CBD=30°,由折叠的性质得到,,,由是等腰三角形,则可分为三种情况就那些讨论:①,②,③,分别求出答案,即可得到答案.【详解】解:∵在等边三角形中,,∴CD=3,BD=,∠CBD=30°,∵沿所在直线折叠后点落在上的点处,∴,,,由是等腰三角形,则①当时,如图,∴,∴,∴是等腰直角三角形,∴,,∵,∴,解得:;∴;②当,此时点与点D重合,如图,∴;③当,此时点F与点D重合,如图,∴,∴;综合上述,的长度为:,或;故答案为:,或.【点睛】本题考查了等边三角形的性质,折叠的性质,以及等腰三角形的性质,熟练运用折叠的性质是本题的关键.注意利用分类讨论的思想进行解题.14、5.5【解析】试题分析:在△DEF和△DBC中,,∴△DEF∽△DBC,∴=,即=,解得BC=4,∵AC=1.5m,∴AB=AC+BC=1.5+4=5.5m考点:相似三角形15、1【分析】根据正切的定义求出CD,根据等腰直角三角形的性质求出BD,结合图形计算,得到答案.【详解】解:在Rt△ACD中,tan∠CAD=,∴CD=AD•tan∠CAD=30×tan30°=10≈17,在Rt△ABD中,∠DAB=45°,∴BD=AD=30,∴h=CD+BD≈1,故答案为:1.【点睛】本题考查解直角三角形的应用,要注意利用已知线段和角通过三角关系求解.16、1【解析】由△ABC与△DEF的相似,它们的相似比是2:3,根据相似三角形的面积比等于相似比的平方,即可得它们的面积比是4:1,又由△ABC的面积为4,即可求得△DEF的面积.【详解】∵△ABC与△DEF的相似,它们的相似比是2:3,
∴它们的面积比是4:1,
∵△ABC的面积为4,
∴△DEF的面积为:4×=1.
故答案为:1.【点睛】本题考查的知识点是相似三角形的性质,解题关键是掌握相似三角形的面积比等于相似比的平方定理.17、(-1,-2)【分析】根据反比例函数图象的对称性得到反比例函数图象与正比例函数图象的两个交点关于原点对称,所以写出点关于原点对称的点的坐标即可.【详解】∵正比例函数的图像与反比例函数的图像的两个交点关于原点对称,其中一个交点的坐标为,∴它们的另一个交点的坐标是.
故答案为:.【点睛】本题主要考查了反比例函数图象的中心对称性,理解反比例函数与正比例函数的交点一定关于原点对称是关键.18、【分析】根据概率的定义求解即可【详解】一副普通扑克牌中的13张红桃牌,牌上的数字是3的倍数有4张∴概率为故本题答案为:【点睛】本题考查了随机事件的概率三、解答题(共66分)19、(1)见解析;(2)【分析】(1)利用圆周角定理得到∠ACB=90°,再根据切线的性质得∠ABD=90°,则∠BAD+∠D=90°,然后利用等量代换证明∠BED=∠D,从而判断BD=BE;(2)利用圆周角定理得到∠AFB=90°,则根据等腰三角形的性质DF=EF=2,再证明,列比例式求出AD的长,然后计算AD-DE即可.【详解】(1)证明:∵是的直径,∴,∴.∵,∴.∵是的切线,∴,∴.又∵平分,∴,∴,∴;(2)解:∵是的直径,∴,又∵,∴.在中,根据勾股定理得,.∵,,∴,∴,即,解得,∴.【点睛】本题考查了圆周角定理、等腰三角形的判定与性质和相似三角形的判定与性质、切线的性质.熟练掌握切线的性质和相似三角形的判定与性质是解答本题的关键.20、(1)证明见解析(2)1【解析】(1)证明:∵将△BCE绕点C顺时针旋转到△DCF的位置,∴△BCE≌△DCF.∴∠FDC=∠EBC.∵BE平分∠DBC,∴∠DBE=∠EBC.∴∠FDC=∠EBE.又∵∠DGE=∠DGE,∴△BDG∽△DEG.(2)解:∵△BCE≌△DCF,∴∠F=∠BEC,∠EBC=∠FDC.∵四边形ABCD是正方形,∴∠DCB=90°,∠DBC=∠BDC=15°.∵BE平分∠DBC,∴∠DBE=∠EBC=22.5°=∠FDC.∴∠BDF=15°+22.5°=67.5°,∠F=90°﹣22.5°=67.5°=∠BDF.∴BD=BF,∵△BCE≌△DCF,∴∠F=∠BEC=67.5°=∠DEG.∴∠DGB=180°﹣22.5°﹣67.5°=90°,即BG⊥DF.∵BD=BF,∴DF=2DG.∵△BDG∽△DEG,BG×EG=1,∴.∴BG×EG=DG×DG=1.∴DG=2∴BE=DF=2DG=1.(1)根据旋转性质求出∠EDG=∠EBC=∠DBE,根据相似三角形的判定推出即可.(2)先求出BD=BF,BG⊥DF,求出BE=DF=2DG,根据相似求出DG的长,即可求出答案21、;,.【分析】(1)直接利用勾股定理求出AC的长即可;
(2)利用平移的性质得出对应点位置进而得出答案;
(3)利用旋转的性质得出对应点位置进而得出答案.【详解】(1)AC==;故答案为;(2)如图所示:△A′B′C′即为所求,A点的对应点A′的坐标为:(1,2);故答案为(1,2);(3)如图所示:△A1B1C1,即为所求;A点对应点A1的坐标是:(3,0).故答案为(3,0).【点睛】本题考查了坐标系中作图,解题的关键是根据图形找出相对应的点即可.22、13.5m【分析】利用三角形相似中的比例关系,首先由题目和图形可看出,求AB的长度分成了2个部分,AH和HB部分,其中HB=EF=1.6m,剩下的问题就是求AH的长度,利用△CGE∽△AHE,得出,把相关条件代入即可求得AH=11.9,所以AB=AH+HB=AH+EF=13.5m.【详解】解:∵CD⊥FB,AB⊥FB,∴CD∥AB∴△CGE∽△AHE∴即:∴∴AH=11.9∴AB=AH+HB=AH+EF=11.9+1.6=13.5(m).【点睛】此题考查的是相似三角形的应用,掌握相似三角形的判定和性质是解决此题的关键.23、灰太狼秒钟后能抓到懒羊羊【分析】根据已知得出AC=BC,进而利用解直角三角形得出BD的长进一步可得到结果.【详解】解;在Rt△BCD中∵∠BCD=90-30=60,∠CBD=30∴AC=BC=50m,在Rt△BCD中∴sin60=∴BD=BCsin60=m,设追赶时间为ts,由题意得:5t=∴t=s答:灰太狼秒钟后能抓到懒羊羊.【点睛】此题考查解直角三角形的应用.注意能借助俯角构造直角三角形并解直角三角形是解题的关键,注意数形结合思想的应用.24、(1)S=﹣x2+20x,0<x<40;(2)当x=20时,菱形的面积最大,最大面积是1.【分析】(1)直接利用菱形面积公式得出S与x之间的关系式;(2)利用配方法求出最值即可.【详解】(1)由题意可得:,∵x为对角线的长,∴x>0,40﹣x>0,即0<x<40;(2),===,即当x=20时,菱形的面积最大,最大面积是1.【点睛】本题考查二次函数的应用,熟练掌握菱形的性质,建立二次函数模型是解题的关键.25、(1)4800元;(2)降价60元.【解析】试题分析:(1)先求出降价前每件商品的利润,乘以每月销售的数量就可以得出每月的总利润;(2)设每件商品应降价x元,由销售问题的数量关系“每件商品的利润×商品的销售数量=总利润”列出方程,解方程即可解决问题.试题解析:(1)由题意得60×(360-280)=4800(元).即降价前商场每月销售该商品的利润是4800元;(2)设每件商品应降价x元,由题意得(360-x-280)(5x+60)=7200,解得x1=8,x2=60.要更
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 4-1《喜看稻菽千重浪-记首届国家最高科技奖获得者袁隆平》(说课稿)高一语文同步高效课堂(统编版 必修上册)
- 2025版离婚房产分割及财产清算与分配服务协议3篇
- 2024-2025学年新教材高中地理 第5章 自然环境的整体性与差异性 第1节 自然环境的整体性说课稿 湘教版选择性必修第一册
- 12《低碳生活每一天》地球“发烧”了(说课稿)-部编版道德与法治四年级上册
- 3《水里的沙》 说课稿 -2023-2024学年科学一年级下册冀人版
- 2025版探矿权出让居间服务合同地质资料保密及使用规范
- 2025年度铁路土地征用与拆迁补偿合同
- 2024秋七年级数学上册 第3章 代数式3.4 合并同类项 1合并同类项说课稿(新版)苏科版001
- 二零二五年度船舶内外装修与维护保养合同
- 2024秋七年级英语上册 Unit 4 Wheres my schoolbag Section A(Grammar Focus-3c)说课稿 (新版)人教新目标版
- 人教版《道德与法治》四年级下册教材简要分析课件
- 2023年MRI技术操作规范
- 办公用品、易耗品供货服务方案
- 自行联系单位实习申请表
- 医疗废物集中处置技术规范
- 媒介社会学备课
- 2023年检验检测机构质量手册(依据2023年版评审准则编制)
- 三相分离器原理及操作
- 新教科版五年级下册科学全册每节课后练习+答案(共28份)
- 葫芦岛尚楚环保科技有限公司医疗废物集中处置项目环评报告
- 全国物业管理项目经理考试试题
评论
0/150
提交评论