版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
19.3课题学习选择方案第十九章一次函数情境引入学习目标
1.会用一次函数知识解决方案选择问题,体会函数模型思想;(重点、难点)
2.能从不同的角度思考问题,优化解决问题的方法;
3.能进行解决问题过程的反思,总结解决问题的方法.导入新课观察与思考200406080100单位:cm观察下图,你能发现它们三条函数直线之间的差别吗?讲授新课选择方案问题1怎样选取上网收费方式?收费方式月使用费/元包时上网时间/h超时费/(元/min)A30250.05B50500.05C120不限时选择哪种方式能节省上网费?下表给出A,B,C三种上宽带网的收费方式.1.哪种方式上网费是会变化的?哪种不变?A、B会变化,C不变2.在A、B两种方式中,上网费由哪些部分组成?上网费=月使用费+超时费3.影响超时费的变量是什么?上网时间4.这三种方式中有一定最优惠的方式吗?没有一定最优惠的方式,与上网的时间有关收费方式月使用费/元包时上网时间/h超时费/(元/min)A30250.05B50500.05C120不限时收费方式月使用费/元包时上网时间/h超时费/(元/min)A30250.05B50500.05设月上网时间为x,则方式A、B的上网费y1、y2都是x的函数,要比较它们,需在x>0时,考虑何时(1)
y1=y2;
(2)
y1<y2;
(3)
y1>y2.收费方式月使用费/元包时上网时间/h超时费/(元/min)A30250.05在方式A中,超时费一定会产生吗?什么情况下才会有超时费?超时费不是一定有的,只有在上网时间超过25h时才会产生.上网费=月使用费+超时费合起来可写为:当0≤x≤25时,y1=30;当x>25时,y1=30+0.05×60(x-25)=3x-45.收费方式月使用费/元包时上网时间/h超时费/(元/min)A30250.05B50500.05C120不限时你能自己写出方式B的上网费y2关于上网时间x之间的函数关系式吗?方式C的上网费y3关于上网时间x之间的函数关系式呢?你能在同一直角坐标系中画出它们的图象吗?当x≥0时,y3=120.当上网时间__________时,选择方式A最省钱.当上网时间__________时,选择方式B最省钱.当上网时间_________时,选择方式C最省钱.
某移动公司对于移动话费推出两种收费方式:
A方案:每月收取基本月租费15元,另收通话费为0.2元/min;
B方案:零月租费,通话费为0.3元/min.(1)试写出A,B两种方案所付话费y(元)与通话时间t(min)之间的函数关系式;(2)在同一坐标系画出这两个函数的图象,并指出那种付费方式合算?做一做解:(1)
A方案:y=15+0.2t(t≥0),
B方案:y=0.3t(t≥0).(2)这两个函数的图象如下:t(min)O501501001020y(元)503040●●y=15+0.2ty=0.5t●观察图象,可知:当通话时间为150min时,选择A或B方案费用一样;当通话时间少于150min时,选择A方案费合算;当通话时间多于150min时,选择B方案合算.问题2怎样租车?某学校计划在总费用2300元的限额内,租用汽车送234名学生和6名教师集体外出活动,每辆汽车上至少有1名教师.现有甲、乙两种大客车,它们的载客量和租金如表所示:(1)共需租多少辆汽车?(2)给出最节省费用的租车方案.甲种客车乙种客车载客量(单位:人/辆)4530租金(单位:元/辆)400280问题1:租车的方案有哪几种?共三种:(1)单独租甲种车;(2)单独租乙种车;(3)甲种车和乙种车都租.某学校计划在总费用2300元的限额内,租用汽车送234名学生和6名教师集体外出活动,每辆汽车上至少有1名教师.现有甲、乙两种大客车,它们的载客量和租金如表所示:甲种客车乙种客车载客量(单位:人/辆)4530租金(单位:元/辆)400280问题2:如果单独租甲种车需要多少辆?乙种车呢?问题3:如果甲、乙都租,你能确定合租车辆的范围吗?汽车总数不能小于6辆,不能超过8辆.单独租甲种车要6辆,单独租乙种车要8辆.甲种客车乙种客车载客量(单位:人/辆)4530租金(单位:元/辆)400280问题4:要使6名教师至少在每辆车上有一名,你能确定排除哪种方案?你能确定租车的辆数吗?说明了车辆总数不会超过6辆,可以排除方案(2)——单独租乙种车;所以租车的辆数只能为6辆.问题5:在问题3中,合租甲、乙两种车的时候,又有很多种情况,面对这样的问题,我们怎样处理呢?方法1:分类讨论——分5种情况;方法2:设租甲种车x辆,确定x的范围.甲种客车乙种客车载客量(单位:人/辆)4530租金(单位:元/辆)400280(1)为使240名师生有车坐,可以确定x的一个范围吗?(2)为使租车费用不超过2300元,又可以确定x的范围吗?结合问题的实际意义,你能有几种不同的租车方案?为节省费用应选择其中的哪种方案?甲种客车乙种客车载客量(单位:人/辆)4530租金(单位:元/辆)400280x辆(6-x)辆
设租用x辆甲种客车,则租车费用y(单位:元)是x
的函数,即怎样确定x
的取值范围呢?甲种客车乙种客车载客量(单位:人/辆)4530租金(单位:元/辆)400280x辆(6-x)辆除了分别计算两种方案的租金外,还有其他选择方案的方法吗?由函数可知y随x
增大而增大,所以x=4时y
最小.做一做:某校校长暑假将带领该校市级“三好生”去北京旅游.甲旅行社说:“如果校长买全票一张,则其余学生可享受半价优惠.”乙旅行社说:“包括校长在内,全部按全票价的6折(即按全票价的60%收费)优惠.”若全票价为240元.(1)设学生数为
x,甲旅行社收费为
y甲,乙旅行社收费为
y乙,分别计算两家旅行社的收费(写出函数解析式);(2)当学生数是多少时,两家旅行社的收费一样?(3)就学生数讨论哪家旅行社更优惠.当x=4时,两家旅行社的收费一样.当x<4时,甲旅行社优惠;当x>4时,乙旅行社优惠.
1.某单位准备和一个体车主或一国营出租车公司中的一家签订月租车合同,设汽车每月行驶x
千米,个体车主收费y1元,国营出租车公司收费为y2元,观察下列图象可知,当x________时,选用个体车较合算.>1500当堂练习2.
某单位有职工几十人,想在节假日期间组织到外地旅游.当地有甲、乙两家旅行社,它们服务质量基本相同,到此地旅游的价格都是每人100元.经联系协商,甲旅行社表示可给予每位游客八折优惠;乙旅行社表示单位先交1000元后,给予每位游客六折优惠.问该单位选择哪个旅行社,可使其支付的旅游总费用较少?
解法一:设该单位参加旅游人数为x.那么选甲旅行社,应付费用80x元;选乙旅行社,应付(60x+1000)元.记y1=80x,y2=60x+1000.在同一直角坐标系内作出两个函数的图象,y1与y2的图象交于点(50,4000).观察图象,可知:当人数为50时,选择甲或乙旅行社费用都一样;当人数为0~49人时,选择甲旅行社费用较少;当人数为51~100人时,选择乙旅行社费用较少.x/人5060y/元800160032002400400048005600O10203040708090y1=80xy2=60x+1000解法二:(1)当y1=y2,即80x=60x+1000时,x=50.所以当人数为50时,选择甲或乙旅行社费用都一样;(2)当y1>y2,即80x
>60x+1000时,得x
>50.所以当人数为51~100人时,选择乙旅行社费用较少;(3)当y1
<y2,即80x
<60x+1000时,得x<50.所以当人数为0~49人时,选择甲旅行社费用较少;解法三:设选择甲、乙旅行社费用之差为y,则y=y1-y2=80x-(60x+1000)=20x-1000.
画出一次函数y=20x-1000的图象如下图.O204060-200-400-600-800-1000yxy=20x-1000它与x轴交点为(50,0)由图可知:(1)当x=50时,y=0,即y1=y2;(2)当x>50时,y
>0,即y1
>y2;(3)当x<50时,y
<0,即y1<y2.课堂小结实际问题函数问题设变量找对应关系函数问题的解实际问题的解解释实际意义19.3课题学习选择方案第十九章一次函数学习目标2.能从不同的角度思考问题,优化解决问题的方法.1.会用一次函数知识解决方案选择问题,体会函数模型思想;3.能进行解决问题过程的反思,总结解决问题的方法.想一想:做一件事情,有时有不同的实施方案.你怎样从中选择最佳方案呢?情景导入收费方式月使用费/元包时上网时间/h超时费/(元/min)A30250.05B50500.05C120不限时选择哪种方式能节省上网费?下表给出A,B,C三种上宽带网的收费方式.合作探究活动1:探究怎样选取上网收费方式收费方式月使用费/元包时上网时间/h超时费/(元/min)A30250.05B50500.05C120不限时1.哪种方式上网费是会变化的?哪种不变?A、B会变化,C不变2.在A、B两种方式中,上网费由哪些部分组成?上网费=月使用费+超时费3.影响超时费的变量是什么?上网时间4.这三种方式中有一定最优惠的方式吗?没有一定最优惠的方式,与上网的时间有关.收费方式月使用费/元包时上网时间/h超时费/(元/min)A30250.05B50500.05设月上网时间为x,则方式A、B的上网费y1、y2都是x的函数,要比较它们,需在x>0时,考虑何时(1)
y1=y2;
(2)
y1<y2;
(3)
y1>y2.收费方式月使用费/元包时上网时间/h超时费/(元/min)A30250.05在方式A中,超时费一定会产生吗?什么情况下才会有超时费?超时费不是一定有的,只有在上网时间超过25h时才会产生.上网费=月使用费+超时费合起来可写为:当0≤x≤25时,y1=30;当x>25时,y1=30+0.05×60(x-25)=3x-45.收费方式月使用费/元包时上网时间/h超时费/(元/min)A30250.05B50500.05C120不限时你能自己写出方式B的上网费y2关于上网时间x之间的函数关系式吗?方式C的上网费y3关于上网时间x之间的函数关系式呢?你能在同一直角坐标系中画出它们的图象吗?当x≥0时,y3=120.当上网时间__________时,选择方式A最省钱.当上网时间__________时,选择方式B最省钱.当上网时间_________时,选择方式C最省钱.解决问题这个实际问题的解决过程中是怎样思考的?实际问题设变量找对应关系一次函数问题一次函数问题的解实际问题的解解释实际意义知识要点100020005001500100020002500x(km)y(元)0y1y2例
某单位需要用车,准备和一个体车主或一国有出租公司其中的一家签订合同.设汽车每月行驶x
km,应付给个体车主的月租费是y1元,付给出租公司的月租费是y2
元,y1,y2
分别与x之间的函数关系图象是如图所示的两条直线,观察图象,回答下列问题:
(1)每月行驶的路程在什么范围内,租国有出租公司的出租车合算?
(2)每月行驶的路程等于多少时,租两家车的费用相同?
(3)如果这个单位估计每月行驶的路程为2300km,那么这个单位租哪家的车合算?当0<x<1500时,租国有的合算.当x=1500时,租两家的费用一样.租个体车主的车合算.某学校计划在总费用2300元的限额内,租用汽车送234名学生和6名教师集体外出活动,每辆汽车上至少有1名教师.现有甲、乙两种大客车,它们的载客量和租金如表所示:(1)共需租多少辆汽车?(2)给出最节省费用的租车方案.甲种客车乙种客车载客量(单位:人/辆)4530租金(单位:元/辆)400280活动2:探究怎样租车问题1影响最后的租车费用的因素有哪些?主要影响因素是甲、乙两种车所租辆数.问题2汽车所租辆数又与哪些因素有关?与乘车人数有关问题3如何由乘车人数确定租车辆数呢?(2)要使每辆汽车上至少有1名教师,汽车总数不能大于6辆.(1)要保证240名师生都有车坐,汽车总数不能小于6辆;问题4
在汽车总数确定后,租车费用与租车的种类有关.如果租甲类车x辆,能求出租车费用吗?
设租用x辆甲种客车,则租用乙种客车的辆数为(6-x)辆;设租车费用为y,则y=400x+280(6-x)化简得y=120x+1680问题5
如何确定y=120x+1680中y的最小值.(1)为使240名师生有车坐,则450x+30(6-x)≥240(2)为使租车费用不超过2300元,则400x+280(6-x)≤2300450x+30(6-x)≥240400x+280(6-x)≤2300由得
因为y随着x的增大而增大,所以当x=4时,y最小,y的最小值是2160元.
设租用x辆甲种客车,则租用乙种客车的辆数为(6-x)辆;设租车费用为y,则化简得y=120x+1680(1)为使240名师生有车坐,则450x+30(6-x)≥240(2)为使租车费用不超过2300元,则400x+280(6-x)≤2300450x+30(6-x)≥240400x+280(6-x)≤2300由得y=400x+280(6-x)依据实际意可取4或5;因为y随着x的增大而增大,所以当x=4时,y最小,y的最小值为2160.归纳
解决含有多个变量的问题时,可以分析这些变量之间的关系,从中选取一个取值能影响其他变量的值的变量作为自变量,然后根据问题的条件寻求可以反映实际问题的函数,以此作为解决问题的数学模型.例为了美化校园环境,争创绿色学校,某县教育局委托园林公司对A、B两校进行校园绿化.已知A校有如图1的阴影部分空地需铺设草坪,B校有如图2的阴影部分空地需铺设草坪.在甲、乙两地分别有同种草皮3500平方米和2500平方米出售,且售价一样.若园林公司向甲、乙两地购买草皮,其路程和运费单价表如下:(注:运费单价表示每平方米草皮运送1千米所需的人民币)求(1)分别求出图1、图2的阴影部分面积;(3)请设计总运费最省的草皮运送方案,并说明理由.(2)请你给出一种草皮运送方案,并求出总运费;A校B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 班级公开课与示范教学计划
- 秋季数字化学习与在线教育实施计划
- 第1课时 三位数乘两位数(教学实录)-2024-2025学年四年级上册数学人教版
- 三年级信息技术上册 第八课 寻找“食人花”教学实录 华中师大版
- 2024年服装设计师兼职合同
- 2024年度桥西区图书馆数字资源室租赁协议3篇
- 8制作我的小乐器 教学实录-2024-2025学年科学四年级上册教科版
- 六盘水职业技术学院《自动化工具软件》2023-2024学年第一学期期末试卷
- 2024年秋季国开电大《形势与政策》形考作业参考答案
- 2024SaaS企业管理软件销售及服务合同3篇
- 《物流系统规划与设计》课程教学大纲
- 护理质控分析整改措施(共5篇)
- 金属矿山安全教育课件
- 托盘演示教学课件
- 中华农耕文化及现实意义
- DB32T 4353-2022 房屋建筑和市政基础设施工程档案资料管理规程
- DBJ61-T 112-2021 高延性混凝土应用技术规程-(高清版)
- 2023年高考数学求定义域专题练习(附答案)
- 农产品品牌与营销课件
- 苏科版一年级心理健康教育第17节《生命更美好》教案(定稿)
- 车辆二级维护检测单参考模板范本
评论
0/150
提交评论