安徽省宣城市六中学2024届八年级数学第二学期期末检测试题含解析_第1页
安徽省宣城市六中学2024届八年级数学第二学期期末检测试题含解析_第2页
安徽省宣城市六中学2024届八年级数学第二学期期末检测试题含解析_第3页
安徽省宣城市六中学2024届八年级数学第二学期期末检测试题含解析_第4页
安徽省宣城市六中学2024届八年级数学第二学期期末检测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省宣城市六中学2024届八年级数学第二学期期末检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.将函数的图象向下平移3个单位,则得到的图象相应的函数表达式为A. B. C. D.2.若,则的值是A. B. C. D.3.如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB.添加一个条件,不能使四边形DBCE成为矩形的是()A.AB=BE B.BE⊥DC C.∠ADB=90° D.CE⊥DE4.平行四边形ABCD中,∠A比∠B大40°,则∠D的度数为()A.60° B.70° C.100° D.110°5.如图,正方形中,点是对角线上的一点,且,连接,,则的度数为()A.20° B.22.5° C.25° D.30°6.如图,△DEF是由△ABC经过平移得到的,若∠C=80°,∠A=33°,则∠EDF=()A.33° B.80° C.57° D.67°7.下列有理式中,是分式的为()A. B. C. D.8.实验学校九年级一班十名同学定点投篮测试,每人投篮六次,投中的次数统计如下:5,4,3,5,5,2,5,3,4,1,则这组数据的中位数,众数分别为()A.4,5 B.5,4 C.4,4 D.5,59.函数y=3x﹣1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限10.股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一只股票某天跌停,之后两天时间又涨回到原价.若这两天此股票股价的平均增长率为x,则x满足的方程是()A.(1+x)2= B.(1+x)2=C.1+2x= D.1+2x=二、填空题(每小题3分,共24分)11.m,n分别是的整数部分和小数部分,则2m-n=______.12.如图,矩形ABCD中,把△ACD沿AC折叠到△ACD′,AD′与BC交于点E,若AD=8,DC=6,则BE的长为______.13.若直线经过点和点,则的值是_____.14.化简:=_____.15.如图,已知函数y=2x和函数y=的图象交于A、B两点,过点A作AE⊥x轴于点E,若△AOE的面积为4,P是坐标平面上的点,且以点B、O、E、P为顶点的四边形是平行四边形,则k=_____,满足条件的P点坐标是_________________.16.如图,在中,已知,,平分,交边于点E,则

___________

.17.已知点P(-2,1),则点P关于x轴对称的点的坐标是__.18.如图菱形ABCD的对角线AC,BD的长分别为12cm,16cm,则这个菱形的周长为____.三、解答题(共66分)19.(10分)如图,矩形纸片中,已知,折叠纸片使边落在对角线上,点落在点处,折痕为,且,求线段的长.20.(6分)已知:如图,在▱ABCD中,AE⊥BC,CF⊥AD,垂足分别为E、F,AE、CF分别与BD相交于点G、H,联结AH、CG.求证:四边形AGCH是平行四边形.21.(6分)已知在▱ABCD中,点E、F在对角线BD上,BE=DF,点M、N在BA、DC延长线上,AM=CN,连接ME、NF.试判断线段ME与NF的关系,并说明理由.22.(8分)如图,在平面直角坐标系中,正比例函数y=kx与函数y=6xx>0的图象相交于点A2,m,AB⊥x轴于点B.平移直线y=kx,使其经过点23.(8分)在甲、乙两个不透明的口袋中装有质地、大小相同的小球,甲袋中有2个白球,1个黄球和1个红球:乙袋中装有1个白球,1个黄球和若干个红球,从乙盒中仼意摸取一球为红球的概率是从甲盒中仼意摸取一球为红球的概率的2倍.(1)乙袋中红球的个数为.(2)若摸到白球记1分,摸到黄球记2分,摸到红球记0分,小明从甲、乙两袋中先后分别任意摸取一球,请用树状图或列表的方法求小明摸得两个球得2分的概率.24.(8分)中国数学史上最先完成勾股定理证明的数学家是公元3世纪三国时期的赵爽,他为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成.将图中正方形MNKT,正方形EFGH,正方形ABCD的面积分别记为,,.若,则正方形EFGH的面积为_______.25.(10分)已知,线段a,直线1及1外一点A,求作:△ABC,使AB=AC,BC=a,且点B、C在直线1上.26.(10分)如图,点分别是对角线上两点,.求证:.

参考答案一、选择题(每小题3分,共30分)1、B【解题分析】

直接根据函数图象平移的法则进行解答即可.【题目详解】解:将一次函数的图象向下平移3个单位长度,相应的函数是;故答案选:B.【题目点拨】本题考查的是一次函数的图象与几何变换,熟知“上加下减”的法则是解答此题的关键.2、C【解题分析】

∵,∴b=a,c=2a,则原式.故选C.3、B【解题分析】

先证明四边形DBCE为平行四边形,再根据矩形的判定进行解答.【题目详解】∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC,又∵AD=DE,∴DE∥BC,且DE=BC,∴四边形BCED为平行四边形,A、∵AB=BE,DE=AD,∴BD⊥AE,∴▱DBCE为矩形,故本选项错误;B、∵对角线互相垂直的平行四边形为菱形,不一定为矩形,故本选项正确;C、∵∠ADB=90°,∴∠EDB=90°,∴▱DBCE为矩形,故本选项错误;D、∵CE⊥DE,∴∠CED=90°,∴▱DBCE为矩形,故本选项错误,故选B.【题目点拨】本题考查了平行四边形的性质与判定,矩形的判定等,熟练掌握相关的判定定理与性质定理是解题的关键.4、B【解题分析】试题分析:根据平行四边形的对角相等,邻角之和为180°,即可求出该平行四边形各个内角的度数.解:画出图形如下所示:∵四边形ABCD是平行四边形,∴∠B=∠D,∠A+∠B=180°,又∵∠A﹣∠B=40°,∴∠A=110°,∠B=70°,∴∠D=∠B=70°.故选B.5、B【解题分析】

根据正方形的性质可得∠CAD=45°,根据等腰三角形的性质可得∠ADE的度数,根据∠CDE=90°-∠ADE即可得答案.【题目详解】∵AC是正方形ABCD的对角线,∴∠CAD=45°,∵AE=AB,AB=AD,∴AE=AD,∴∠ADE=∠AED=67.5°,∵∠ADC=90°,∴∠CDE=∠ADC-∠ADE=90°-67.5°=22.5°.故选B.【题目点拨】本题考查了正方形的性质及等腰三角形的性质,正方形四边都相等,四个角都为90°,对角线互相垂直平分,并且平分每一组对角.熟练掌握相关性质是解题关键.6、A【解题分析】

根据平移的性质,得对应角∠EDF=∠A,即可得∠EDF的度数.【题目详解】解:在△ABC中,∠A=33°,

∴由平移中对应角相等,得∠EDF=∠A=33°.

故选:A.【题目点拨】此题主要考查了平移的性质,解题时,注意运用平移中的对应角相等.7、D【解题分析】

判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【题目详解】解:、、的分母中均不含有字母,因此它们是整式,而不是分式.分母中含有字母,因此是分式.故选:D【题目点拨】本题主要考查分式的定义,注意π不是字母,是常数,所以不是分式,是整式.8、A【解题分析】

根据众数及中位数的定义,结合所给数据即可作出判断.【题目详解】解:将数据从小到大排列为:1,2,3,3,4,4,5,5,5,5,这组数据的众数为:5;中位数为:4故选:A.【题目点拨】本题考查(1)、众数;(2)、中位数.9、B【解题分析】试题分析:根据一次函数的性质即可得到结果。,图象经过一、二、四象限,不经过第二象限,故选B.考点:本题考查的是一次函数的性质点评:解答本题的关键是熟练掌握一次函数的性质:当时,图象经过一、二、三象限;当时,图象经过一、三、四象限;当时,图象经过一、二、四象限;当时,图象经过二、三、四象限.10、B【解题分析】

股票一次跌停就跌到原来价格的90%,再从90%的基础上涨到原来的价格,且涨幅只能≤10%,所以至少要经过两天的上涨才可以.设平均每天涨x,每天相对于前一天就上涨到1+x.【题目详解】解:假设股票的原价是1,平均增长率为.则90%(1+x)2=1,即(1+x)2=,故选B.【题目点拨】此题考查增长率的定义及由实际问题抽象出一元二次方程的知识,这道题的关键在于理解:价格上涨x后是原来价格的(1+x)倍.二、填空题(每小题3分,共24分)11、【解题分析】

先估算出的大致范围,然后可求得-1的整数部分和小数部分,从而可得到m、n的值,最后代入计算即可.【题目详解】解:∵1<2<4,∴1<<2,∴0<-1<1.∴m=0,n=-1.∴2m-n=0-(-1)=1-.故答案为:【题目点拨】本题主要考查的是估算无理数的大小,求得的大致范围是解题的关键.12、【解题分析】∵四边形ABCD为矩形,

∴AB=DC=6,BC=AD=8,AD∥BC,∠B=90°.

∵△ACD沿AC折叠到△ACD′,AD′与BC交于点E,

∴∠DAC=∠D′AC.

∵AD∥BC,

∴∠DAC=∠ACB.

∴∠D′AC=∠ACB.

∴AE=EC.

设BE=x,则EC=8-x,AE=8-x.

∵在Rt△ABE中,AB2+BE2=AE2,

∴62+x2=(8-x)2,解得x=,即BE的长为.故答案是:.13、4【解题分析】

分别把和代入中即可求出k和b的值,从而可以得出k-b的值.【题目详解】解:∵直线经过点和点,∴将代入中得-2=k-3,解得k=1,将代入中得b=-3,∴k-b=1-(-3)=4,故答案为4.【题目点拨】本题考查一次函数的应用,解题的关键是能根据函数图象上的点与函数的解析式的关系列出关于k和b的一元一次方程,并分别求出k和b的值.14、1【解题分析】

根据二次根式的乘法,化简即可得解.【题目详解】解:==1.故答案为:1.【题目点拨】本题主要考查二次根式的乘法法则,熟悉掌握法则是关键.15、8P1(0,-4),P2(-4,-4),P3(4,4)【解题分析】

解:如图∵△AOE的面积为4,函数y=的图象过一、三象限,∴S△AOE=•OE•AE=4,∴OE•AE=8,∴xy=8,∴k=8,∵函数y=2x和函数y=的图象交于A、B两点,∴2x=,∴x=±2,当x=2时,y=4,当x=-2时,y=-4,∴A、B两点的坐标是:(2,4)(-2,-4),∵以点B、O、E、P为顶点的平行四边形共有3个,∴满足条件的P点有3个,分别为:P1(0,-4),P2(-4,-4),P3(4,4).故答案为:8;P1(0,-4),P2(-4,-4),P3(4,4).【题目点拨】本题考查反比例函数综合题.16、1【解题分析】

由和平分,可证,从而可知为等腰三角形,则,由,,即可求出.【题目详解】解:中,AD//BC,平分故答案为1.【题目点拨】本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.17、(-2,-1)【解题分析】

根据关于x轴对称的点的横坐标相等,纵坐标互为相反数,可得答案.【题目详解】点P(﹣2,1),则点P关于x轴对称的点的坐标是(﹣2,﹣1),故答案是:(﹣2,﹣1).【题目点拨】考查了关于x轴对称的对称点,利用关于x轴对称的点的横坐标相等,纵坐标互为相反数是解题关键.18、40cm【解题分析】

根据菱形的对角线互相垂直平分可得AC⊥BD,OA=AC,OB=BD,再利用勾股定理列式求出AB,然后根据菱形的四条边都相等列式计算即可得解.【题目详解】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=AC=×12=6cm,OB=BD=×16=8cm,根据勾股定理得,,所以,这个菱形的周长=4×10=40cm.故答案为:40cm.【题目点拨】本题考查了菱形的性质,勾股定理,主要利用了菱形的对角线互相垂直平分,需熟记.三、解答题(共66分)19、4【解题分析】

根据矩形的性质得到BC=AD=8,∠B=90°,再根据折叠的性质得BE=EF=3,∠AFE=∠B=90°,则可计算出CE=5,然后在Rt△CEF中利用勾股定理计算FC.【题目详解】解:∵四边形是矩形,.,,;在中,.【题目点拨】本题考查了折叠的性质:叠前后图形的形状和大小不变,对应边和对应角相等.也考查了矩形的性质以及勾股定理.20、证明见解析.【解题分析】法1:由平行四边形对边平行,且CF与AD垂直,得到CF与BC垂直,根据AE与BC垂直,得到AE与CF平行,得到一对内错角相等,利用等角的补角相等得到∠AGB=∠DHC,根据AB与CD平行,得到一对内错角相等,再由AB=CD,利用AAS得到三角形ABG与三角形CDH全等,利用全等三角形对应边相等得到AG=CH,利用一组对边平行且相等的四边形为平行四边形即可得证;法2:连接AC,与BD交于点O,利用平行四边形的对角线互相平分得到OA=OC,OB=OD,再由AB与CD平行,得到一对内错角相等,根据CF与AD垂直,AE与BC垂直,得一对直角相等,利用ASA得到三角形ABG与三角形CDH全等,利用全等三角形对应边相等得到BG=DH,根据等式的性质得到OG=OH,利用对角线互相平分的四边形为平行四边形即可得证.证明:在□ABCD中,AD∥BC,AB∥CD,∵CF⊥AD,∴CF⊥BC,∵AE⊥BC,∴AE∥CF,即AG∥CH,∴∠AGH=∠CHG,∵∠AGB=180°﹣∠AGH,∠DHC=180°﹣∠CHG,∴∠AGB=∠DHC,∵AB∥CD,∴∠ABG=∠CDH,∴△ABG≌CDH,∴AG=CH,∴四边形AGCH是平行四边形;法2:连接AC,与BD相交于点O,在□ABCD中,AO=CO,BO=DO,∠ABE=∠CDF,AB∥CD,∴∠ABG=∠CDH,∵CF⊥AD,AE⊥BC,∴∠AEB=∠CFD=90°,∴∠BAG=∠DCH,∴△ABG≌CDH,∴BG=DH,∴BO﹣BG=DO﹣DH,∴OG=OH,∴四边形AGCH是平行四边形.“点睛”此题考查了平行四边形的判定与性质,熟练掌握平式子变形的判定与性质是解本题的关键.21、ME=NF且ME∥NF,理由见解析【解题分析】

利用SAS证得△BME≌△DNF后即可证得结论.【题目详解】证明:ME=NF且ME∥NF.理由如下:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠EBM=∠FDN,AB=CD,∵AM=CN,∴MB=ND,∵BE=DF,∴BF=DE,∵在△BME和△DNF中,∴△BME≌△DNF(SAS),∴ME=NF,∠MEB=∠NFD,∴∠MEF=∠BFN.∴ME∥NF.∴ME=NF且ME∥NF.【题目点拨】此题主要考查了平行四边形的性质以及全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解题关键.22、y=3【解题分析】

求出A点的坐标,求出B点的坐标,再用待定系数法求出正比例函数的解析式,最后求出一次函数的解析式即可.【题目详解】解:将A(2,m)代入y=6x∵AB⊥x轴于点B,∴B(2,0).将A(2,3)代入y=kx中,3=2k∴设直线l所对应的函数表达式为y=3将∴B(2,0)代入上式,得0=3+b,解得b=-3.∴直线l所对应的函数表达式是y=3故答案为:y=3【题目点拨】本题考查平移的性质,反比例函数图象上点的坐标特征,用待定系数法求函数的解析式等知识点,能用待定系数法求出函数的解析式是解题的关键.23、(1)2;(2)小明摸得两个球得2分的概率为.【解题分析】

(1)首先设乙袋中红球的个数为x个,根据题意可得方程:,解此方程即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小明摸得两个球得2分的情况,再利用概率公式求解即可求得答案.【题目详解】(1)甲袋中摸出红球的概率为,则乙袋中摸出红球的概率为,设乙袋中红球的个数为x个,根据题意得:,解得:x=2,经检验,x=2是原分式方程的解,∴乙袋中红球

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论