![四川省自贡市高新区六校2024届八年级数学第二学期期末综合测试模拟试题含解析_第1页](http://file4.renrendoc.com/view10/M00/37/3E/wKhkGWXO2_aAGvMaAAGujNWn-18196.jpg)
![四川省自贡市高新区六校2024届八年级数学第二学期期末综合测试模拟试题含解析_第2页](http://file4.renrendoc.com/view10/M00/37/3E/wKhkGWXO2_aAGvMaAAGujNWn-181962.jpg)
![四川省自贡市高新区六校2024届八年级数学第二学期期末综合测试模拟试题含解析_第3页](http://file4.renrendoc.com/view10/M00/37/3E/wKhkGWXO2_aAGvMaAAGujNWn-181963.jpg)
![四川省自贡市高新区六校2024届八年级数学第二学期期末综合测试模拟试题含解析_第4页](http://file4.renrendoc.com/view10/M00/37/3E/wKhkGWXO2_aAGvMaAAGujNWn-181964.jpg)
![四川省自贡市高新区六校2024届八年级数学第二学期期末综合测试模拟试题含解析_第5页](http://file4.renrendoc.com/view10/M00/37/3E/wKhkGWXO2_aAGvMaAAGujNWn-181965.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省自贡市高新区六校2024届八年级数学第二学期期末综合测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.以下列各组数为边长,能构成直角三角形的是()A. B. C. D.2.一元二次方程的解为()A. B.B. C., D.,3.如图,在中,,,垂足为,点是边的中点,,,则()A.8 B.7.5 C.7 D.64.如图,在中,下列结论错误的是()A. B. C. D.5.均匀地向一个容器注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为折线),这个容器的形状可以是()A. B. C. D.6.已知一个正多边形的每个外角等于,则这个正多边形是()A.正五边形 B.正六边形 C.正七边形 D.正八边形7.如图,在△ABC中,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,若∠BAD=45°,则∠B的度数为()A.75° B.65° C.55° D.45°8.关于的一元二次方程有两个不相等的实数根,则的取值范围是()A. B.且 C.且 D.9.若平行四边形中两个相邻内角度数比为1:2,则其中较大的内角是()A.90° B.60° C.120° D.45°10.关于函数y=﹣2x+1,下列结论正确的是()A.图象必经过(﹣2,1) B.y随x的增大而增大C.图象经过第一、二、三象限 D.当x>时,y<0二、填空题(每小题3分,共24分)11.如图,菱形ABCD的周长为16cm,BC的垂直平分线EF经过点A,则对角线BD长为_____________cm.12.一次函数y=kx+3的图象不经过第3象限,那么k的取值范围是______13.如图,在矩形ABCD中,AB=9,点E,F分别在BC,CD上,将△ABE沿AB折叠,使点B落在AC上的点B'处,又将△CEF沿EF折叠,使点C落在直线EB'与AD的交点C'14.将反比例函数的图像绕着原点O顺时针旋转45°得到新的双曲线图像(如图1所示),直线轴,F为x轴上的一个定点,已知,图像上的任意一点P到F的距离与直线l的距离之比为定值,记为e,即.(1)如图1,若直线l经过点B(1,0),双曲线的解析式为,且,则F点的坐标为__________.(2)如图2,若直线l经过点B(1,0),双曲线的解析式为,且,P为双曲线在第一象限内图像上的动点,连接PF,Q为线段PF上靠近点P的三等分点,连接HQ,在点P运动的过程中,当时,点P的坐标为__________.15.已知、为有理数,、分别表示的整数部分和小数部分,且,则.16.若等腰三角形中相等的两边长为10cm,第三边长为16cm,那么第三边上的高为______cm.17.数据1,2,3,4,5,x的平均数与众数相等,则x=_____.18.若,则的值为__________,的值为________.三、解答题(共66分)19.(10分)已知A(0,2),B(4,0),C(6,6)(1)在图中的直角坐标系中画出△ABC;(2)求△ABC的面积.20.(6分)计算:①|-|+|-2|-|-1|②+-+(-1)1.21.(6分)如图,在平面直角坐标系可中,直线y=x+1与y=﹣x+3交于点A,分别交x轴于点B和点C,点D是直线AC上的一个动点.(1)求点A,B,C的坐标;(2)在直线AB上是否存在点E使得四边形EODA为平行四边形?存在的话直接写出的值,不存在请说明理由;(3)当△CBD为等腰三角形时直接写出D坐标.22.(8分)甲、乙两家采摘园的圣女果品质相同,售价也相同,节日期间,两家均推出优惠方案,甲:游客进园需购买元门票,采摘的打六折;乙:游客进园不需购买门票,采摘超过一定数量后,超过部分打折,设某游客打算采摘千克,在甲、乙采摘园所需总费用为、元,、与之间的函数关系的图像如图所示.(1)分别求出、与之间的函数关系式;(2)求出图中点、的坐标;(3)若该游客打算采摘圣女果,根据函数图像,直接写出该游客选择哪个采摘园更合算.23.(8分)如图,在平面直角坐标系xOy中,A(1,1),B(4,1),C(2,3).(1)在图中作出△ABC关于y轴的轴对称图形△A′B′C′;(2)在图中作出△ABC关于原点O中心对称图形△A"B"C".24.(8分)如图,,平分,且交于点,平分,且交于点,与相交于点,连接(1)求证:四边形是菱形.(2)若,,求的长.25.(10分)已知关于的一元二次方程:;(1)求证:无论为何值,方程总有实数根;(2)若方程的一个根是2,求另一个根及的值.26.(10分)如图,菱形ABCD中,AB=6cm,∠ADC=60°,点E从点D出发,以1cm/s的速度沿射线DA运动,同时点F从点A出发,以1cm/s的速度沿射线AB运动,连接CE、CF和EF,设运动时间为t(s).(1)当t=3s时,连接AC与EF交于点G,如图①所示,则AG=cm;(2)当E、F分别在线段AD和AB上时,如图②所示,求证△CEF是等边三角形;(3)当E、F分别运动到DA和AB的延长线上时,如图③所示,若CE=cm,求t的值和点F到BC的距离.
参考答案一、选择题(每小题3分,共30分)1、C【解题分析】
欲判断能否构成直角三角形,只需验证两小边的平方和是否等于最长边的平方.【题目详解】解:A、∵12+()2≠22,∴此组数据不能作为直角三角形的三边长,故本选项错误;
B、∵22+22≠32,∴此组数据不能作为直角三角形的三边长,故本选项错误;C、∵12+()2=()2,∴此组数据能作为直角三角形的三边长,故本选项正确;D、∵42+52≠62,∴此组数据不能作为直角三角形的三边长,故本选项错误.故选:C.【题目点拨】此题主要考查了勾股定理逆定理,解答此题关键是掌握勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.2、D【解题分析】
把方程整理成,然后因式分解求解即可.【题目详解】解:把方程整理成即∴或解得:,故选:D.【题目点拨】此题考查了一元二次方程的解法,一元二次方程的解法有:直接开平方法;分解因式法;公式法;配方法,本题涉及的解法有分解因式法,此方法的步骤为:把方程右边通过移项化为0,方程左边利用提公因式法,式子相乘法,公式法以及分组分解法分解因式,然后根据两数积为0,两数中至少有一个为0,转化为两个一元一次方程,进而得到原方程的解.3、B【解题分析】
根据直角三角形的性质得到AE=BE=CE=AB=5,根据勾股定理得到CD==3,根据三角形的面积公式即可得到结论.【题目详解】解:∵在△ABC中,∠ACB=90°,C点E是边AB的中点,
∴AE=BE=CE=AB=5,
∵CD⊥AB,DE=4,
∴CD==3,
∴S△AEC=S△BEC=×BE•CD=×5×3=7.5,
故选:B.【题目点拨】本题考查了直角三角形斜边上的中线,能求出AE=CE是解此题的关键,注意:直角三角形斜边上的中线等于斜边的一半4、D【解题分析】
根据平行四边形的对边平行和平行线的性质即可一一判断.【题目详解】∵四边形ABCD是平行四边形,
∴AB=CD,∠BAD=∠BCD,(平行四边形的对边相等,对角相等)故B、C正确.
∵四边形ABCD是平行四边形,
∴AB∥BC,
∠1=∠2,故A正确,
故只有∠1=∠3错误,
故选:D.【题目点拨】此题考查平行四边形的性质,解题关键在于掌握平行四边形的对边相等;平行四边形的对角相等;平行四边形的对边平行.5、D【解题分析】试题分析:注水量一定,函数图象的走势是稍陡,平,陡;那么速度就相应的变化,跟所给容器的粗细有关.则相应的排列顺序就为D.故选D.考点:函数的图象.6、B【解题分析】分析:根据多边形的外角和为360°即可得出答案.详解:360°÷60°=6,即六边形,故选B.点睛:本题主要考查的是正多边形的外角和定理,属于基础题型.多边形的内角和定理为(n-2)×180°,多边形的外角和为360°.7、A【解题分析】
由基本作图得到MN垂直平分AC,则DA=DC,所以∠DAC=∠C=30°,然后根据三角形内角和计算∠B的度数.【题目详解】解:由作法得MN垂直平分AC,
∴DA=DC,
∴∠DAC=∠C=30°,
∴∠BAC=∠BAD+∠DAC=45°+30°=75°,
∵∠B+∠C+∠BAC=180°,
∴∠B=180°-75°-30°=75°.
故选:A.【题目点拨】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).8、B【解题分析】
由方程根的情况,根据判别式可得到关于的不等式,则可求得取值范围;【题目详解】解:因为一元二次方程有两个不相等的实数根,所以>0,且,所以>0,解得:<,又因为,所以,所以且,故选B.【题目点拨】本题考查利用一元二次方程的根的判别式求字母的取值范围,同时考查一元二次方程定义中二次项系数不为0,掌握知识点是解题关键.9、C【解题分析】
据平行四边形的性质得出AB∥CD,推出∠B+∠C=180°,根据∠B:∠C=1:2,求出∠C即可.【题目详解】∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠B+∠C=180°,
∵∠B:∠C=1:2,
∴∠C=×180°=120°,
故选:C.【题目点拨】本题考查了平行线的性质和平行四边形的性质的应用,能熟练地运用性质进行计算是解此题的关键,题目比较典型,难度不大.10、D【解题分析】根据一次函数的性质,依次分析选项可得答案.解:根据一次函数的性质,依次分析可得,A、x=-2时,y=-2×-2+1=5,故图象必经过(-2,5),故错误,B、k<0,则y随x的增大而减小,故错误,C、k=-2<0,b=1>0,则图象经过第一、二、四象限,故错误,D、当x>时,y<0,正确;故选D.点评:本题考查一次函数的性质,注意一次函数解析式的系数与图象的联系二、填空题(每小题3分,共24分)11、4.【解题分析】试题分析:连接AC,∵菱形ABCD的周长为16cm,∴AB=4cm,AC⊥BD,∵BC的垂直平分线EF经过点A,∴AC=AB=4cm,∴OA=AC=2cm,∴OB==2cm,∴BD=2OB=4cm.故答案为4.考点:菱形的性质;线段垂直平分线的性质.12、k<0【解题分析】
根据图象在坐标平面内的位置关系确定k的取值范围,从而求解.【题目详解】解:∵一次函数y=kx+3的图象不经过第三象限,∴经过第一、二、四象限,∴k<0.故答案为:k<0.【题目点拨】本题考查了一次函数图象与系数的关系.13、3【解题分析】
首先连接CC',可以得到连接CC'是∠EC'D的平分线,所以CB'=CD,又AB'=AB,所以【题目详解】解:如下图所示,连接CC'∵将△ABE沿AB折叠,使点B落在AC上的点B'处,又将△CEF沿EF折叠,使点C落在直线EB'与AD∴EC'∵∠2=∠3∴∠1=∠3在△CC'B'和△∠D=∠C∴△CC'B'≅∴CB又∵AB∴AB∴B'为对角线AC的中点即AC=2AB=18∴∠ACB=30°则∠BAC=60°,∠ACC'=∠DCC∴∠DC'∴∠DC'F=∠FC'C=30°∴'∵DF+CF=CD=AB=9∴DF=9故答案为3.【题目点拨】本题考查了折叠问题和矩形的性质,注意折叠前面的两个图形是两个全等形.14、F(4,0)【解题分析】
(1)令y=0求出x的值,结合e=2可得出点A的坐标,由点B的坐标及e=2可求出AF的长度,将其代入OF=OB+AB+AF中即可求出点F的坐标;
(2)设点P的坐标为(x,),则点H的坐标为(1,),由Q为线段PF上靠近点P的三等分点,可得出点Q的坐标为(x+,),利用两点间的距离公式列方程解答即可;【题目详解】解:(1)如图:当y=0时,±,
解得:x1=2,x2=-2(舍去),
∴点A的坐标为(2,0).
∵点B的坐标为(1,0),
∴AB=1.
∵e=2,
∴,
∴AF=2,
∴OF=OB+AB+AF=4,
∴F点的坐标为(4,0).
故答案为:(4,0).(2)设点P的坐标为(x,),则点H的坐标为(1,).
∵点Q为线段PF上靠近点P的三等分点,点F的坐标为(5,0),
∴点Q的坐标为(x+,).
∵点H的坐标为(1,),HQ=HP,
∴(x+-1)2+(-)2=[(x-1)]2,
化简得:15x2-48x+39=0,
解得:x1=,x2=1(舍去),
∴点P的坐标为(,).故答案为:(,).【题目点拨】本题考查了两点间的距离、解一元二次方程以及反比例函数的综合应用,解题的关键是:(1)利用特殊值法(点A和点P重合),求出点F的坐标;(2)设出点P的坐标,利用两点间的距离公式找出关于x的一元二次方程;15、1.【解题分析】试题分析:∵2<<3,∴5>>1,∴m=1,n=,∵,∴,化简得:,等式两边相对照,因为结果不含,∴且,解得a=3,b=﹣2,∴2a+b=2×3﹣2=6﹣2=1.故答案为1.考点:估算无理数的大小.16、1【解题分析】
根据等腰三角形的性质先求出BD,然后在Rt△ABD中,可根据勾股定理进行求解.【题目详解】解:如图:
由题意得:AB=AC=10cm,BC=11cm,
作AD⊥BC于点D,则有DB=BC=8cm,
在Rt△ABD中,AD==1cm.
故答案为1.【题目点拨】本题考查了等腰三角形的性质及勾股定理的知识,关键是掌握等腰三角形底边上的高平分底边,及利用勾股定理求直角三角形的边长.17、3【解题分析】
根据平均数和众数的概念,可知当平均数与众数相等时,而1,2,3,4,5各不相同,因而x就是众数,也是平均数.则x就是1,2,3,4,5的平均数.【题目详解】平均数与众数相等,则x就是1,2,3,4,5的平均数,所以x==3.故答案为:3.【题目点拨】本题考查了众数,算术平均数,掌握众数的定义和平均数的公式是解题的关键.18、,【解题分析】
令,用含k的式子分别表示出,代入求值即可.【题目详解】解:令,则,所以,.故答案为:(1).,(2).【题目点拨】本题考查了分式的比值问题,将用含同一字母的式子表示是解题的关键.三、解答题(共66分)19、(1)在平面直角坐标系中画出△ABC如图所示,见解析;(2)△ABC的面积=1.【解题分析】
(1)在坐标系内描出各点,再顺次连接即可;(2)根据△ABC的面积等于正方形的面积减去3个三角形的面积求出即可.【题目详解】解:(1)在平面直角坐标系中画出△ABC如图所示:(2)△ABC的面积=6×6-×4×2-×2×6-×4×6=36-4-6-12=1.故答案为:(1)在平面直角坐标系中画出△ABC如图所示,见解析;(2)△ABC的面积=1.【题目点拨】本题考查坐标和图形的关系以及三角形的面积,找到各点的对应点,是解题的关键.20、①3-2;②4.5.【解题分析】
(1)原式利用绝对值的代数意义化简,计算即可得到结果.(2)本题涉及三次根式、二次根式化简、平方3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.根据实数运算法则即可得到结果.【题目详解】解:①|-|+|-2|-|-1|=-+2--+1=3-2;②+-+(-1)1=2+2-0.5+1=4.5.【题目点拨】(1)本题考查了实数运算,熟练掌握运算法则是解题的关键.(2)本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握三次根式、二次根式、平方等考点的运算.21、(1)A(,),B(﹣1,0),C(4,0);(2)存在,=;(3)点D的坐标为(﹣,)或(8,﹣3)或(0,3)或(,).【解题分析】
(1)将y=x+1与y=﹣x+3联立求得方程组的解可得到点A的坐标,然后将y=0代入函数解析式求得对应的x的值可得到点B、C的横坐标;(2)当OE∥AD时,存在四边形EODA为平行四边形,然后依据平行线分线段成比例定理可得到=;(3)当DB=DC时,点D在BC的垂直平分线上可先求得点D的横坐标;即AC与y轴的交点为F,可求得CF=BC=F,当点D与点F重合或点D与点F关于点C对称时,三角形BCD为等腰三角形,当BD=BC时,设点D的坐标为(x,﹣x+3),依据两点间的距离公式可知:(x+1)2+(﹣x+3)2=25,从而可求得点D的横坐标.【题目详解】(1)将y=x+1与y=﹣x+3联立得:,解得:x=,y=,∴A(,).把y=0代入y=x+1得:x+1=0,解得x=﹣1,∴B(﹣1,0).把y=0代入y=﹣x+3得:﹣x+3=0,解得:x=4,∴C(4,0).(2)如图,存在点E使EODA为平行四边形.∵EO∥AC,∴==.(3)当点BD=DC时,点D在BC的垂直平分线上,则点D的横坐标为,将x=代入直线AC的解析式得:y=,∴此时点D的坐标为(,).如图所示:FC==5,∴BC=CF,∴当点D与点F重合时,△BCD为等腰三角形,∴此时点D的坐标为(0,3);当点D与点F关于点C对称时,CD=CB,∴此时点D的坐标为(8,﹣3),当BD=DC时,设点D的坐标为(x,﹣x+3),依据两点间的距离公式可知:(x+1)2+(﹣x+3)2=25,解得x=4(舍去)或x=﹣,将x=﹣代入y=﹣x+3得y=,∴此时点D的坐标为(﹣,).综上所述点D的坐标为(﹣,)或(8,﹣3)或(0,3)或(,).【题目点拨】本题主要考查的是一次函数的综合应用,利用平行线分线段成比例定理求解是解答问题(2)的关键;分类讨论是解答问题(3)的关键.22、(1)与之间的函数关系式为;与之间的函数关系式为;(2);(3)甲【解题分析】
(1)根据单价=总价÷数量,即可求出甲、乙两采摘园优惠前的草莓销售价格;函数关系式=60+单价×数量;与之间的函数关系式结合图像,利用待定系数法即可解决;(2)分两段,求函数交点即可解决;(3)当时,根据y1和y2函数图象分析,图象在下方的价格低.【题目详解】(1)由图得单价为(元),据题意,得当时,,当时由题意可设,将和分别代入中,得,解得,故与之间的函数关系式为(2)联立,,得,故.联立,,得解得,故.(3)当时,y1的函数图象在y2函数图象下方,故甲采摘园更合算.【题目点拨】本题考查了一次函数的应用,注意分段函数要分别讨论;熟练掌握待定系数法以及根据图象分析函数大小是解答本题的关键.23、(1)答案见解析;(2)答案见解析.【解题分析】
(1)在坐标轴中找出点A'(-1,1),B(-4,1),C'(-2,3),连线即可.(2)在坐标轴中找出点A"(-1,-1),B"(-4,-1),C"(-2,-3),连线即可.【题目详解】(1)△ABC关于y轴的轴对称图形△A′B′C′的坐标分别为A'(-1,1),B'(-4,1),C'(-2,3),在坐标轴中找出点,连线即可.(2)△ABC关于原点O中心对称图形△A"B"C"的坐标分别为A"(-1,-1),B"(-4,-1),C"(-2,-3),在坐标轴中找出点,连线即可.【题目点拨】本题主要考查了坐标轴中图形的对称,正确掌握坐标轴中图形的对称图形的坐标是解题的关键.24、(1)见解析;(2)AD=.【解题分析】
(1)根据平行线的性质得出∠ADB=∠DBC,∠DAC=∠BCA,根据角平分线定义得出∠DAC=∠BAC,∠ABD=∠DBC,求出∠BAC=∠ACB,∠ABD=∠ADB,根据等腰三角形的判定得出AB=BC=AD,根据平行四边形的判定得出四边形ABCD是平行四边形,即可得出结论;(2)根据菱形的性质可得∠AOD=90°,OD=3,然后在Rt△AOD中利用勾股定理列方程求出AO即可解决问题.【题目详解】(1)证明:∵AE∥BF,∴∠ADB=∠DBC,∠DAC=∠BCA,∵AC、BD分别是∠BAD、∠ABC的平分线,∴∠DAC=∠BAC,∠ABD=∠DBC,∴∠BAC=∠ACB,∠ABD=∠ADB,∴AB=BC,AB=AD∴AD=BC,∵AD∥BC,∴四边形ABCD是平行四边形,∵AD=AB,∴平行四边形四边形ABCD是菱形;(2)∵四边形ABCD是菱形,BD=6,∴∠AOD=90°,OD=3,∵,∴AD=2AO,在Rt△AOD中,AD2=AO2+OD2,即4AO2=AO2+9,∴AO=,∴AD=2AO=.【题目点拨】本题主要考查了平行线的性质、角平分线定义、等腰三角形的判定、平行四边形的判定、菱形的判定和性质、含30度直角三角形的性质以及勾股定理,熟练掌握菱形的判定定理和性质定理是解题的关键.25、(1)详见解析;(2),【解题分析】
(1)根据根的判别式得出△=(k﹣3)2≥0,从而证出无论k取任何值,方程总有实数根.(2)先把x=2代入原方程,求出k的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人教版数学七年级下册第41课时《用加减法解二元一次方程组(三)》听评课记录
- 湘教版数学八年级上册2.5《第6课时 全等三角形的性质和判定的应用》听评课记录1
- 听评课记录英语九年级
- 人教版(广西版)九年级数学上册听评课记录21.2 解一元二次方程
- 生态自然保护游合同
- 狂犬疫苗打完免责协议书(2篇)
- 苏科版数学八年级下册《10.2 分式的基本性质》听评课记录
- 部编版道德与法治七年级上册第三单元第七课《亲情之爱第三框让家更美好》听课评课记录
- 【2022年新课标】部编版七年级上册道德与法治第三单元师长情谊6-7课共5课时听课评课记录
- 五年级数学上册苏教版《认识平方千米》听评课记录
- 过松源晨炊漆公店(其五)课件
- 最新交管12123学法减分题库含答案(通用版)
- 安全事故案例图片(76张)课件
- 预应力锚索施工方案
- 豇豆生产技术规程
- MES运行管理办法
- 奢侈品管理概论完整版教学课件全书电子讲义(最新)
- 文艺美学课件
- 中药炮制学教材
- 常见肿瘤AJCC分期手册第八版(中文版)
- 电气第一种第二种工作票讲解pptx课件
评论
0/150
提交评论