河北省沧州盐山中学2024届高一数学第二学期期末学业质量监测试题含解析_第1页
河北省沧州盐山中学2024届高一数学第二学期期末学业质量监测试题含解析_第2页
河北省沧州盐山中学2024届高一数学第二学期期末学业质量监测试题含解析_第3页
河北省沧州盐山中学2024届高一数学第二学期期末学业质量监测试题含解析_第4页
河北省沧州盐山中学2024届高一数学第二学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省沧州盐山中学2024届高一数学第二学期期末学业质量监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,实数、满足关系式,若对于任意给定的,当在上变化时,的最小值为,则()A. B. C. D.2.设函数,则满足的的取值范围是()A. B. C. D.3.向量,,若,则()A.5 B. C. D.4.在等差数列中,已知=2,=16,则为()A.8 B.128 C.28 D.145.的三内角所对的边分别为,若,则角的大小是()A. B. C. D.6.一个圆柱的侧面展开图是一个正方形,这个圆柱全面积与侧面积的比为()A. B. C. D.7.记为实数中的最大数.若实数满足则的最大值为()A. B.1 C. D.8.下列函数中,既是偶函数又在上是单调递减的是A. B. C. D.9.下面的程序运行后,输出的值是()A.90 B.29 C.13 D.5410.若实数满足约束条件,则的最大值是()A. B.0 C.1 D.2二、填空题:本大题共6小题,每小题5分,共30分。11.如图,在直四棱柱中,,,,分别为的中点,平面平面.给出以下几个说法:①;②直线与的夹角为;③与平面所成的角为;④平面内存在直线与平行.其中正确命题的序号是__________.12.已知无穷等比数列的前项和,其中为常数,则________13.如图,在四面体A-BCD中,已知棱AC的长为,其余各棱长都为1,则二面角A-CD-B的平面角的余弦值为________.14.已知,,,则的最小值为__________.15.的最大值为______.16.等比数列中前n项和为,且,,,则项数n为____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.平面四边形中,.(1)若,求;(2)设,若,求面积的最大值.18.等差数列的前项和为,数列是等比数列,满足,,,,.(1)求数列和的通项公式;(2)令,求数列的前项和.19.已知函数.(1)求的最小正周期和最大值;(2)求在上的单调区间20.已知圆过点,且与圆关于直线:对称.(1)求圆的标准方程;(2)设为圆上的一个动点,求的最小值.21.已知点,,均在圆上.(1)求圆的方程;(2)若直线与圆相交于,两点,求的长;(3)设过点的直线与圆相交于、两点,试问:是否存在直线,使得恰好平分的外接圆?若存在,求出直线的方程;若不存在,请说明理由.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】

先计算出,然后利用基本不等式可得出的值.【题目详解】,由基本不等式得,当且仅当时,由于,即当时,等号成立,因此,,故选:A.【题目点拨】本题考查极限的计算,考查利用基本不等式求最值,解题的关键就是利用数列的极限计算出带的表达式,并利用基本不等式进行计算,考查运算求解能力,属于中等题.2、C【解题分析】

利用特殊值,对选项进行排除,由此得到正确选项.【题目详解】当时,,由此排除D选项.当时,,由此排除B选项.当时,,由此排除A选项.综上所述,本小题选C.【题目点拨】本小题主要考查分段函数求值,考查利用特殊值法解选择题,属于基础题.3、A【解题分析】

由已知等式求出,再根据模的坐标运算计算出模.【题目详解】由得,解得.∴,,.故选:A.【题目点拨】本题考查求向量的模,考查向量的数量积,及模的坐标运算.掌握数量积和模的坐标表示是解题基础.4、D【解题分析】

将已知条件转化为的形式列方程组,解方程组求得,进而求得的值.【题目详解】依题意,解得,故.故选:D.【题目点拨】本小题主要考查等差数列通项的基本量计算,属于基础题.5、C【解题分析】

将进行整理,反凑余弦定理,即可得到角.【题目详解】因为即故可得又故.故选:C.【题目点拨】本题考查余弦定理的变形,属基础题.6、A【解题分析】解:设圆柱底面积半径为r,则高为2πr,全面积:侧面积=[(2πr)2+2πr2]:(2πr)2这个圆柱全面积与侧面积的比为,故选A7、B【解题分析】

先利用判别式法求出|x|,|y|,|z|的取值范围,再判断得解.【题目详解】因为,所以,整理得:,解得,所以,同理,.故选B【题目点拨】本题主要考查新定义和判别式法求范围,意在考查学生对这些知识的理解掌握水平和分析推理能力.8、B【解题分析】

可先确定奇偶性,再确定单调性.【题目详解】由题意A、B、C三个函数都是偶函数,D不是偶函数也不是奇函数,排除D,A中在上不单调,C中在是递增,只有B中函数在上递减.故选B.【题目点拨】本题考查函数的奇偶性与单调性,解题时可分别确定函数的这两个性质.9、D【解题分析】

根据程序语言的作用,模拟程序的运行结果,即可得到答案.【题目详解】模拟程序的运行,可得,执行循环体,,执行循环体,,执行循环体,,执行循环体,,退出循环,输出的值为1.故选:D.【题目点拨】本题考查利用模拟程序执行过程求输出结果,考查逻辑推理能力和运算求解能力,属于基础题.10、C【解题分析】

由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,求出最优解的坐标代入目标函数即可得解.【题目详解】作出可行域如图,设,联立,则,,当直线经过点时,截距取得最小值,取得最大值.故选:C【题目点拨】本题考查简单的线性规划,考查了数形结合的解题思想方法,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、①③.【解题分析】

利用线面平行的性质定理可判断①;利用平行线的性质可得直线与的夹角等于直线与所成的角,在中即可判断②;与平面所成的角即为与平面所成的角可判断③;根据直线与平面的位置关系可判断④;【题目详解】对于①,由,平面平面,则,又,所以,故①正确;对于②,连接,由,即直线与的夹角等于直线与所成的角,在中,,显然直线与的夹角不为,故②不正确;对于③,与平面所成的角即为与平面所成的角,根据三棱柱为直棱柱可知为与平面所成的角,在梯形中,,,,可解得与平面所成的角为,故③正确;对于④,由于与平面相交,故平面内不存在与平行的直线.故答案为:①③【题目点拨】本题是一道立体几何题目,考查了线面平行的性质定理,求线面角以及直线与平面之间的位置关系,属于中档题.12、1【解题分析】

根据等比数列的前项和公式,求得,再结合极限的运算,即可求解.【题目详解】由题意,等比数列前项和公式,可得,又由,所以,所以,可得.故答案为:.【题目点拨】本题主要考查了等比数列的前项和公式的应用,以及熟练的极限的计算,其中解答中根据等比数列的前项和公式,求得的值,结合极限的运算是解答的关键,着重考查了推理与运算能力,属于基础题.13、【解题分析】如图,取中点,中点,连接,由题可知,边长均为1,则,中,,则,得,所以二面角的平面角即,在中,,则,所以.点睛:本题采用几何法去找二面角,再进行求解.利用二面角的定义:公共边上任取一点,在两个面内分别作公共边的垂线,两垂线的夹角就是二面角的平面角,找到二面角的平面角,再求出对应三角形的三边,利用余弦定理求解(本题中刚好为直角三角形).14、8【解题分析】由题意可得:则的最小值为.当且仅当时等号成立.点睛:在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.15、3【解题分析】

由余弦型函数的值域可求得整个函数的值域,进而得到最大值.【题目详解】,即故答案为:【题目点拨】本题考查含余弦型函数的值域的求解问题,关键是明确在自变量无范围限制时,余弦型函数的值域为.16、6【解题分析】

利用等比数列求和公式求得,再利用通项公式求解n即可【题目详解】,代入,,得,又,得.故答案为:6【题目点拨】本题考查等比数列的通项公式及求和公式的基本量计算,熟记公式准确计算是关键,是基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】

(1)法一:在中,利用余弦定理即可得到的长度;法二:在中,由正弦定理可求得,再利用正弦定理即可得到的长度;(2)在中,使用正弦定理可知是等边三角形或直角三角形,分两种情况分别找出面积表达式计算最大值即可.【题目详解】(1)法一:中,由余弦定理得,即,解得或舍去,所以.法二:中,由正弦定理得,即.解得,故,.由正弦定理得,即,解得.(2)中,由正弦定理及,可得,即或,即或.是等边三角形或直角三角形.中,设,由正弦定理得.若是等边三角形,则.∵当时,面积的最大值为;若是直角三角形,则.当时,面积的最大值为;综上所述,面积的最大值为.【题目点拨】本题主要考查正弦定理,余弦定理,面积公式,三角函数最值的相关应用,综合性强,意在考查学生的计算能力,转化能力,分析三角形的形状并讨论是解决本题的关键.18、(1),;(2)【解题分析】

(1)由是等差数列,,,可求出,由是等比数列,,,,可求出;(2)将和的通项公式代入,则,利用裂项相消求和法可求出.【题目详解】(1),,,解得.又,,.(2)由(1),得【题目点拨】本题考查了等差数列和等比数列的通项公式的求法,考查了用裂项相消求数列的前项和,属于中档题.19、(1)f(x)的最小正周期为π,最大值为;(2)f(x)在上单调递增;在上单调递减.【解题分析】

(1)由条件利用三角恒等变换化简函数的解析式,再利用正弦函数的周期性和最值求得的最小正周期和最大值.(2)根据,利用正弦函数的单调性,即可求得在上的单调区间.【题目详解】解:(1)函数,即故函数的周期为,最大值为.(2)当时,,故当时,即时,为增函数;当时,即时,为减函数;即函数在上单调递增;在上单调递减.【题目点拨】本题主要考查三角恒等变换,正弦函数的周期性和最值,正弦函数的单调性,属于中档题.20、(1);(2).【解题分析】

试题分析:(1)两个圆关于直线对称,那么就是半径相等,圆心关于直线对称,利用斜率相乘等于和中点在直线上建立方程,解方程组求出圆心坐标,同时求得圆的半径,由此求得圆的标准方程;(2)设,则,代入化简得,利用三角换元,设,所以.试题解析:(1)设圆心,则,解得,则圆的方程为,将点的坐标代入得,故圆的方程为.(2)设,则,且,令,∴,故的最小值为-1.考点:直线与圆的位置关系,向量.21、(1);(2);(3)存在,和.【解题分析】

(1)根据圆心在,的中垂线上,设圆心的坐标为,根据求出的值,从而可得结果;(2)利用点到直线的距离公式以及勾股定理可得结果;(3)首先验证直线的斜率不存在时符合题意,然后斜率存在时,设出直线方程,与圆的方程联立,利用韦达定理,根据列方程求解即

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论