2024届上海市长征中学数学高一下期末联考试题含解析_第1页
2024届上海市长征中学数学高一下期末联考试题含解析_第2页
2024届上海市长征中学数学高一下期末联考试题含解析_第3页
2024届上海市长征中学数学高一下期末联考试题含解析_第4页
2024届上海市长征中学数学高一下期末联考试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届上海市长征中学数学高一下期末联考试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在区间上随机取一个数,使得的概率为()A. B. C. D.2.已知函数在上是减函数,则实数的取值范围是()A. B. C. D.3.在中,已知,则的面积为()A. B. C. D.4.如图所示,在四边形中,,,.将四边形沿对角线折成四面体,使平面平面,则下列结论中正确的结论个数是()①;②;③与平面所成的角为;④四面体的体积为.A.个 B.个 C.个 D.个5.三角形的三条边长是连续的三个自然数,且最大角是最小角的2倍,则该三角形的最大边长为()A.4 B.5 C.6 D.76.祖暅原理也就是“等积原理”,它是由我国南北朝杰出的数学家祖冲之的儿子祖暅首先提出来的.祖暅原理的内容是:“幂势既同,则积不容异”,“势”即是高,“幂”是面积.意思是,如果夹在两平行平面间的两个几何体,被平行于这两个平行平面的平面所截,如果两个截面的面积总相等,那么这两个几何体的体积相等.已知,两个平行平面间有三个几何体,分别是三棱锥、四棱锥、圆锥(高度都是h),其中:三棱锥的体积为V,四棱锥的底面是边长为a的正方形,圆锥的底面半径为r,现用平行于这两个平面的平面去截三个几何体,如果得到的三个截面面积总相等,那么,下面关系式正确的是()A.,, B.,,C.,, D.,,7.函数()的部分图象如图所示,若,且,则()A.1 B. C. D.8.已知组数据,,…,的平均数为2,方差为5,则数据2+1,2+1,…,2+1的平均数与方差分别为()A.=4,=10 B.=5,=11C.=5,=20 D.=5,=219.已知{an}是等差数列,且a2+a5+a8+a11=48,则a6+a7=()A.12 B.16 C.20 D.2410.如图,向量,,的起点与终点均在正方形网格的格点上,若,则()A. B.3 C.1 D.二、填空题:本大题共6小题,每小题5分,共30分。11.在平面直角坐标系xOy中,双曲线的右支与焦点为F的抛物线交于A,B两点若,则该双曲线的渐近线方程为________.12.设函数的最小值为,则的取值范围是___________.13.设当时,函数取得最大值,则______.14.若直线平分圆,则的值为________.15.已知圆是圆上的一条动直径,点是直线上的动点,则的最小值是____.16.若点,关于直线l对称,那么直线l的方程为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数的最小正周期为,且直线是其图象的一条对称轴.(1)求函数的解析式;(2)在中,角、、所对的边分别为、、,且,,若角满足,求的取值范围;(3)将函数的图象向右平移个单位,再将所得的图象上每一点的纵坐标不变,横坐标伸长为原来的倍后所得到的图象对应的函数记作,已知常数,,且函数在内恰有个零点,求常数与的值.18.已知点,,均在圆上.(1)求圆的方程;(2)若直线与圆相交于,两点,求的长;(3)设过点的直线与圆相交于、两点,试问:是否存在直线,使得恰好平分的外接圆?若存在,求出直线的方程;若不存在,请说明理由.19.如图,在四棱锥中,平面,底面是棱长为的菱形,,,是的中点.(1)求证://平面;(2)求直线与平面所成角的正切值.20.△ABC在内角A、B、C的对边分别为a,b,c,已知a=bcosC+csinB.(Ⅰ)求B;(Ⅱ)若b=2,求△ABC面积的最大值.21.已知四棱锥的底面为直角梯形,,,底面,且,是的中点.(1)求证:直线平面;(2)若,求二面角的正弦值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】则,故概率为.2、C【解题分析】

根据复合函数单调性,结合对数型函数的定义域列不等式组,解不等式组求得的取值范围.【题目详解】由于的底数为,而函数在上是减函数,根据复合函数单调性同增异减可知,结合对数型函数的定义域得,解得.故选:C【题目点拨】本小题主要考查根据对数型复合函数单调性求参数的取值范围,属于基础题.3、B【解题分析】

根据三角形的面积公式求解即可.【题目详解】的面积.

故选:B【题目点拨】本题主要考查了三角形的面积公式,属于基础题.4、B【解题分析】

根据题意,依次分析命题:对于①,可利用反证法说明真假;对于②,为等腰直角三角形,平面,得平面,根据勾股定理逆定理可知;对于③,由与平面所成的角为知真假;对于④,利用等体积法求出所求体积进行判定即可,综合可得答案.【题目详解】在四边形中,,,则,可得,由,若,且,可得平面,平面,,这与矛盾,故①不正确;平面平面,平面平面,,平面,平面,平面,,由勾股定理得,,,,故,故②正确;由②知平面,则直线与平面所成的角为,且有,,则为等腰直角三角形,且,则.故③不正确;四面体的体积为,故④不正确.故选:B.【题目点拨】本题主要考查了直线与平面所成的角,以及三棱锥的体积的计算,考查了空间想象能力,推理论证能力,解题的关键是须对每一个进行逐一判定.5、C【解题分析】

根据三角形满足的两个条件,设出三边长分别为,三个角分别为,利用正弦定理列出关系式,根据二倍角的正弦函数公式化简后,表示出,然后利用余弦定理得到,将表示出的代入,整理后得到关于的方程,求出方程的解得到的值,【题目详解】解:设三角形三边是连续的三个自然,三个角分别为,

由正弦定理可得:,

再由余弦定理可得:,

化简可得:,解得:或(舍去),

∴,故三角形的三边长分别为:,故选:C.【题目点拨】此题考查了正弦、余弦定理,以及二倍角的正弦函数公式,正弦、余弦定理很好的建立了三角形的边角关系,熟练掌握定理是解本题的关键,属于中档题.6、D【解题分析】

由祖暅原理可知:三个几何体的体积相等,根据椎体体积公式即可求解.【题目详解】由祖暅原理可知:三个几何体的体积相等,则,解得,由,解得,所以.故选:D【题目点拨】本题考查了椎体的体积公式,需熟记公式,属于基础题.7、D【解题分析】

由三角函数的图象求得,再根据三角函数的图象与性质,即可求解.【题目详解】由图象可知,,即,所以,即,又因为,则,解得,又由,所以,所以,又因为,所以图中的最高点坐标为.结合图象和已知条件可知,所以,故选D.【题目点拨】本题主要考查了由三角函数的部分图象求解函数的解析式,以及三角函数的图象与性质的应用,其中解答中熟记三角函数的图象与性质是解答的关键,着重考查了推理与运算能力,属于基础题.8、C【解题分析】

根据题意,利用数据的平均数和方差的性质分析可得答案.【题目详解】根据题意,数据,,,的平均数为2,方差为5,则数据,,,的平均数,其方差;故选.【题目点拨】本题考查数据的平均数、方差的计算,关键是掌握数据的平均数、方差的计算公式,属于基础题.9、D【解题分析】由等差数列的性质可得,则,故选D.10、A【解题分析】

根据图像,将表示成的线性和形式,由此求得的值,进而求得的值.【题目详解】根据图像可知,所以,故选A.【题目点拨】本小题主要考查平面向量的线性运算,考查平面向量基本定理,考查数形结合的数学思想方法,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

根据题意到,联立方程得到,得到答案.【题目详解】,故.,故,故,故.故双曲线渐近线方程为:.故答案为:.【题目点拨】本题考查了双曲线的渐近线问题,意在考查学生的计算能力和综合应用能力.12、.【解题分析】

确定函数的单调性,由单调性确定最小值.【题目详解】由题意在上是增函数,在上是减函数,又,∴,,故答案为.【题目点拨】本题考查分段函数的单调性.由单调性确定最小值,13、;【解题分析】f(x)=sinx-2cosx==sin(x-φ),其中sinφ=,cosφ=,当x-φ=2kπ+(k∈Z)时,函数f(x)取得最大值,即θ=2kπ++φ时,函数f(x)取到最大值,所以cosθ=-sinφ=-.14、1【解题分析】

把圆的一般式方程化为标准方程得到圆心,根据直线过圆心,把圆心的坐标代入到直线的方程,得到关于的方程,解方程即可【题目详解】圆的标准方程为,则圆心为直线过圆心解得故答案为【题目点拨】本题考查的是直线与圆的位置关系,解题的关键是求出圆心的坐标,属于基础题15、【解题分析】

由题意得,==﹣=,即可求的最小值.【题目详解】圆,得,则圆心C(1,2),半径R=,如图可得:==﹣=,点是直线上,所以=()2=,∴的最小值是=.故答案为:.【题目点拨】本题考查了向量的数量积、转化和数形结合的思想,点到直线的距离,属于中档题.16、【解题分析】

利用直线垂直求出对称轴斜率,利用中点坐标公式求出中点,再由点斜式可得结果.【题目详解】求得,∵点,关于直线l对称,∴直线l的斜率1,直线l过AB的中点,∴直线l的方程为,即.故答案为:.【题目点拨】本题主要考查直线垂直的性质,考查了直线点斜式方程的应用,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);(3),.【解题分析】

(1)由函数的周期公式可求出的值,求出函数的对称轴方程,结合直线为一条对称轴结合的范围可得出的值,于此得出函数的解析式;(2)由得出,再由结合锐角三角函数得出,利用正弦定理以及内角和定理得出,由条件得出,于此可计算出的取值范围;(3)令,得,换元得出,得出方程,设该方程的两根为、,由韦达定理得出,分(ii)、;(ii),;(iii),三种情况讨论,计算出关于的方程在一个周期区间上的实根个数,结合已知条件得出与的值.【题目详解】(1)由三角函数的周期公式可得,,令,得,由于直线为函数的一条对称轴,所以,,得,由于,,则,因此,;(2),由三角形的内角和定理得,.,且,,.,由,得,由锐角三角函数的定义得,,由正弦定理得,,,,且,,,.,因此,的取值范围是;(3)将函数的图象向右平移个单位,得到函数,再将所得的图象上每一点的纵坐标不变,横坐标伸长为原来的倍后所得到的图象对应的函数为,,令,可得,令,得,,则关于的二次方程必有两不等实根、,则,则、异号,(i)当且时,则方程和在区间均有偶数个根,从而方程在也有偶数个根,不合乎题意;(ii)当,则,当时,只有一根,有两根,所以,关于的方程在上有三个根,由于,则方程在上有个根,由于方程在区间上只有一个根,在区间上无实解,方程在区间上无实数解,在区间上有两个根,因此,关于的方程在区间上有个根,在区间上有个根,不合乎题意;(iii)当时,则,当时,只有一根,有两根,所以,关于的方程在上有三个根,由于,则方程在上有个根,由于方程在区间上无实数根,在区间上只有一个实数根,方程在区间上有两个实数解,在区间上无实数解,因此,关于的方程在区间上有个根,在区间上有个根,此时,,得.综上所述:,.【题目点拨】本题考查利用三角函数的性质求三角函数的解析式,以及三角形中的取值范围问题,以及三角函数零点个数问题,同时也涉及了复合函数方程解的个数问题,考查分类讨论思想的应用,综合性较强,属于难题.18、(1);(2);(3)存在,和.【解题分析】

(1)根据圆心在,的中垂线上,设圆心的坐标为,根据求出的值,从而可得结果;(2)利用点到直线的距离公式以及勾股定理可得结果;(3)首先验证直线的斜率不存在时符合题意,然后斜率存在时,设出直线方程,与圆的方程联立,利用韦达定理,根据列方程求解即可.【题目详解】解:(1)由题意可得:圆心在直线上,设圆心的坐标为,则,解得,即圆心,所以半径,所以圆的方程为;(2)圆心到直线的距离为:,;(3)设,由题意可得:,且的斜率均存在,即,当直线的斜率不存在时,,则,满足,故直线满足题意,当直线的斜率存在时,设直线的方程为,由,消去得,则,由得,即,即,解得:,所以直线的方程为,综上所述,存在满足条件的直线和.【题目点拨】本题考查直线和圆的位置关系,注意对于直线要研究其斜率是否存在,另外利用韦达定理可以达到设而不求的目的,本题是中档题.19、(1)见解析(2)【解题分析】

(1)连接交于点,则为的中点,由中位线的性质得出,再利用直线与平面平行的判定定理得出平面;(2)取的中点,连接,由中位线的性质得到,且,可得出平面,于此得出直线与平面所成的角为,然后在中计算即可.【题目详解】(1)连接,交于点,连接,由底面是菱形,知是的中点,又是的中点,∴.又∵平面,平面,∴平面;(2)取中点,连接,∵分别为的中点,∴,∵平面,∴平面,∴直线与平面所成角为,∵,,∴.【题目点拨】本题考查直线与平面平行的判定,考查直线与平面所成角的计算,在计算直线与平面所成角时,要注意过点作平面的垂线,构造出直线与平面所成的角,再选择合适的直角

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论