![澳大利亚生成式AI机遇-英_第1页](http://file4.renrendoc.com/view10/M03/17/30/wKhkGWV5UfSAO4b8AAHIRZrP4v4424.jpg)
![澳大利亚生成式AI机遇-英_第2页](http://file4.renrendoc.com/view10/M03/17/30/wKhkGWV5UfSAO4b8AAHIRZrP4v44242.jpg)
![澳大利亚生成式AI机遇-英_第3页](http://file4.renrendoc.com/view10/M03/17/30/wKhkGWV5UfSAO4b8AAHIRZrP4v44243.jpg)
![澳大利亚生成式AI机遇-英_第4页](http://file4.renrendoc.com/view10/M03/17/30/wKhkGWV5UfSAO4b8AAHIRZrP4v44244.jpg)
![澳大利亚生成式AI机遇-英_第5页](http://file4.renrendoc.com/view10/M03/17/30/wKhkGWV5UfSAO4b8AAHIRZrP4v44245.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Australia’s
GenerativeAI
opportunityJuly
2023This
document
isintendedfor
general
informationalpurposes
only.
ThereportisacollaborationbetweenMicrosoft
andtheTechCouncil
ofAustralia.This
report
isacollaboration
betweenMicrosoft
and
Tech
Council
ofAustralia.Views
andopinions
expressed
in
this
documentarebasedon
thecompanies’
knowledgeandunderstandingof
itsareaofbusiness,
marketsandtechnology.
Thecompanies
donotprovidemedical,legal,
regulatory,
audit,or
taxadvice,
andthis
document
doesnotconstitute
adviceofanynature.
Whiletheinformationin
this
document
has
beenprepared
in
goodfaith,thecompanies
disclaim,tothefullestextentpermittedbyapplicable
law,
anyandallliability
for
theaccuracyandcompleteness
of
theinformationin
this
document
andforanyactsoromissions
madebasedon
suchinformation.Opinionsexpressedhereinaresubjecttochange
withoutnotice.Nopart
ofthis
documentmaybe
reproducedin
anymanner
withoutthewrittenpermission
of
thecompanies.
This
document
maymakereferencesto
thirdpartynames,
trademarks
or
copyrights
thatmaybeownedby
others.Anythird-party
names,
trademarksorcopyrights
containedinthis
documentarethepropertyoftheir
respectiveowners.Executive
Summary
(1/3)Generative
AIisalready
copiloting
workGenerativeAI
(GAI)representsasubstantialeconomicopportunity
for
Australia,
with
thepotential
toaddtensofbillionstotheeconomy
by2030.Toaccount
for
this
uncertainty,
wemodelthreedifferent
scenariosofadoption.In
thescenarioofslow-pacedadoption,
GAIcould
contribute$45Bannually
to
theAustralian
economyby2030.
In
themediumandfast-pacedscenarios,this
figurecould
be$75B
or$115B
respectively.Thisrangeisequivalent
to
2-5%
oftheAustralian
economy.Mostofthiseconomic
value
resultsfromimprovementsto
existing
industries,
with70%fromenhanced
labourproductivity
and
20%fromimprovedquality
ofoutputs.New
products
and
servicesdrive
theremaining
10%ofvalue.In
software
development,GAIcan
translatenaturallanguageinto
code,democratising
coding
skills.It
cansuggest
novel
solutions
tocoding
issues,allowingdeveloperstofocusmoreonstrategisingand
high-valuethinking.GAI,powered
bydeepneural
networkssuch
asLargeLanguageModels(LLMs),
enablesthecreation
ofnovel
content
and
contributes
toautomation,datacomprehension,
andanalysis.
Thisrapidly
evolvingtechnologycan
drive
economic
value
through
twomainchannels:improving
existing
businesses(through
productivity
andquality
gains)and
creatingnew
productsand
services.Forcreatives,GAIcan
streamlineworkloadsbyhandlingtasks
such
asimagegenerationorediting,
and
copygeneration.Thiscan
freethemupto
focusmoreoncreativedirection,
ideation
and
strategy.The
Generative
AIopportunityFirst,GAI
canimproveexisting
businessesbyautomatingrepetitivetasks
and
copiloting
complexprocesses,
leading
toimprovedproductivity
and
workquality.
Research
has
alreadyfound
GAIcodingtoolsreduce
task
timesby56%,1
and
writing
toolsdecreasewritingtimeby37%,
with
improvedquality.2Annualvalue-addedby2030Formarketingandsalesprofessionals,GAI
cancraftpersonalisedsalespitchesbased
oncustomerdataandpreferences,
createinteractive
product
demosand
providereal-timelanguagetranslation,
enhancing
customerengagement.$75B$115B$45BTobetter
understand
howeachoccupation
isimpactedbyGAI,weanalysed
datafromtheOccupational
Information
Network
(O*NET),which
provides
information
onthetasks
undertaken
byeachoccupation
in
theeconomy.Onaverage,
acrosstheeconomy,GAI
canautomate22%oftask-hoursand
augmentanequalshare.Automationoftasks
improvestheproductivity
ofworkers
byallowing
themtoproduce
more
in
anygiven
amountoftime.In
parallel,taskaugmentation,wherebyGAIactsasacopilot
(i.e.anexperthelperto
ausertrying
to
accomplish
acomplextask)
enablesworkers
to
producehigher
quality
outputin
thesameamountoftime.Formanagers,GAIcan
assiststaffcommunication,creating
training
materials,identifying
trendsin
employeesentiment,andanalysing
performancedata.Slow-pacedadoptionMedium-pacedadoptionFast-pacedadoptionForresearchers,GAIcan
helpthink
through
complexproblems
and
developframeworks
to
structure
researchprojects.
It
can
alsoassistin
writing
tasks
such
asoutlinecreation,word
selection,and
proofreading.Drivers
ofvalue10%20%Secondly,
GAIpavesthewayfor
innovative
productsand
services,suchasconversational
virtual
assistantsand
interactive
wearablehealthdevices.
Thisnewwaveofinnovation
can
leadtothecreation
ofnewindustries,
jobs,
and
economic
growth.Importantly,
movingfromthepotential
benefitsofGAI
to
actual,
realisedgainsdependsonarangeoffactors,including
how
useful
it
isforbusinesses,
how
thetechnologyisregulated
andsafelymanaged,andhowworkersaresupported
to
usethetechnology.
In
sizing
theeconomicvalue
ofGAI
to
Australia
by2030,
weneed
to
account
for
significantuncertainty,
particularly
around
howquickly
thetechnologycan
beeffectively
adopted.Productivity
gainsQuality
gains70%Valuefrom
newproductsandservices1.
Kalliamvakou,
E(2022).
Research:quantifying
Github
Copilot’simpact
ondeveloperproductivity
andhappiness.
2.
Noy
andZhang(2023)
Experimental
Evidenceonthe
productivity
effectsof
GenerativeArtificial
Intelligence.
Working
Paper.
MITCopyright
©2023
TechnologyCouncil
ofAustralia.
All
rightsreserved.Executive
Summary
(2/3)Exploring
potential
use
casesof
GAI
highlights
the
significant
valueitcan
unlock
acrossvarioussectors
ofthe
economyThe
second
section
of
thisreport
explorestheopportunity
ofGAIfor
Australia
through
moretangibleexamples.It
identifiesfour
key
sectors
whereAustralia
can
succeedincreating
valuethroughGAI.Theseopportunities
arehealthcare,manufacturing,
retailand
professional
services.IndustryThe
Generative
AIopportunityThesesectorswerechosenfortwokey
reasons.
First,they
arelikely
tocontinue
tobeimportantsectors
foremploymentand
outputin
theAustralian
economyinto
thefuture.
Second,GAI
islikely
tohaveatransformativeeffectonthesesectors.In
thehealthcare
sector,GAI
canenhance
thequality
and
accessibility
ofservices.Byreducingthetimeburden
ofadministrative
tasks,
healthcareprofessionalshavemoretimefor
patient-focused
care.Furthermore,theintegration
ofGAI
into
wearabledevices
canpersonalisehealthcare,enabling
proactivemodelsofcarethrough
earlierdiagnosesatscale.HealthcareAdditionally,
thesesectorsand
theirdiverse
usecasesforGAIillustrate
thebreadthofthetechnology’s
impactontheeconomy.Theselection
process
involved
desktop
research,industry
analysis,consultation
with
experts,
alongwith
engagements
with
executivesand
key
industry
personnelmorebroadly.In
manufacturing,GAI
could
usherin
an
era
ofnew,innovative
capabilities,
contributing
toAustralia's
strategic
focus
onadvanced
manufacturing.
Thistransition
would
strengthenAustralia's
reputationforproducing
high-quality,
technically-advanced
products.ManufacturingRetailImportantly,
thecontentsofthesesector
deepdives
culminates
fromconsultations
with
industry
experts,
and
aRoundtable
discussion
heldin
June
with
leadersfromindustry,
academiaandgovernments.Wethankall
whocontributed
to
thesediscussions.Retailindustries,
alreadyinvesting
in
omnichannel
capabilities
due
tothepandemic,couldintegrateGAIinto
existing
digital
platforms.Thiscan
drive
brand
differentiation
and
allow
greatercustomer
personalisation,all
while
maintaining
cost-competitiveness.Lastly,the
professional
services
industry
could
leverageGAItoautomate
routine
tasks,
freeingupahighly
educated
workforcetofocusonhigher-value
activities.
With
GAI,Australia
couldfurther
elevateitsstatusforhigh-quality
knowledgeworkers,
notablyin
thebankingand
legalsubsectors.ProfessionalservicesCopyright
©2023
TechnologyCouncil
ofAustralia.
All
rightsreserved.Executive
Summary
(3/3)Key
challengesKey
actionsCapturingtheeconomic
potential
of
GAIrequiresleveragingAustralia’scomparative
advantages
andstrategicactions
byindustryandgovernment.Australia
possesses
severalcomparativeadvantagesthat
canenableit
toseizetheeconomic
potentialofGAI.Theseinclude
ahighly-skilled
workforceproficient
in
datascience,engineering,
andcomputerscience
andarobustresearch
and
developmentsector.Additional
benefits,such
asourstrategic
location
closeto
Asia,astableand
transparentregulatoryenvironment,
and
athriving
start-upecosystem
provide
stronggrounds
forGAIdevelopmentandadoption.••Narrowing
themarginfor
errorFor
adopters:The
scale
of
investmentrequiredtobuildindustry-specificAIorchestrationsTechnologycapability1.
DefinetheGenerative
AI
opportunity2.
Assessreadiness3.
Investandexperimentwith
thetechnology4.
Develop
aResponsibleAI
governance
framework5.
UpskilltheworkforceAlongside
thesekey
strengths,therearealsokeychallenges.
Tocapturetheeconomic
benefitsofGAI,Australia
needsto
addressbarriersaround
technology
capability,
enterprisereadiness,awareness
and
skills,and
responsibleAI.Such
barriersinclude
thesignificant
investmentsrequired
to
build
AI
orchestrationstomeetspecific
industry
contexts,integration
with
existing
systems,
dataprotection,and
workforceupskilling.•••Deciding
toinvestLaunchinginternalAIgovernanceThe
speedof
changeEnterprisereadiness6.
Communicate
tocustomers
andstakeholdersBothindustry
and
governmenthavekey
rolesto
playin
addressingthesechallenges.
Industry
needsto
clearly
define
GAI'sopportunity,assess
readiness,invest
in
and
experimentwith
thetechnology,developprivacy
and
security
guardrails,
upskill
theworkforce,
andmonitorperformance.Meanwhile,
theAustralian
Government'sroleiscrucial
in
settingaclear
vision
forGAIin
Australia,
supportingcollaboration
between
researchinstitutions
andindustry,
providingregulatoryclarity,
incentivising
GAI
adoption,and
investing
in
theright
skills.•••BuildingessentialC-suite
knowledgeBuildingworkforce
digitalliteracyManaging
training
pathwaysFor
regulators
andpolicymakers:Awarenessandskills1.
Definethevisionfor
GenerativeAIinAustralia2.
Support
collaboration
betweenresearchinstitutionsand
industry3.
Provide
regulatory
clarity••••Developing
trust4.
Incentiviseadoption
andinnovationManaging
privacy
anddata
securityRegulatory
certaintyBytakingthesestrategicactionstogether,Australiacan
unlock
thetransformativepotential
ofGAI,
driving
economic
growthand
globalcompetitiveness.ResponsibleAI5.
InvestintherightskillsandsupportworkersthroughthetransitionManaging
intellectualpropertyCopyright
©2023
TechnologyCouncil
ofAustralia.
All
rightsreserved.Contents010203Generative
AIcanpower
economicopportunitiesin
Australiaworthtensofbillion
by2030071623Generative
AIcasestudiesshowcase
thepotential
tounlocksignificantvalueacross
theeconomyBytaking
strategic
action,Australia
can
leveragecomparativeadvantages
and
capture
Generative
AI'spotentialCopyright
©2023
TechnologyCouncil
ofAustralia.
All
rightsreserved.Generative
AIcan
power
economicopportunitiesin
Australia
worthtensofbillionsby2030Copyright
©2023Technology
Council
ofAustralia.
Allrights
reserved.Generative
AI
creates
novelcontent
inresponse
touser
promptsand
isbecomingmorepowerful
andaccessible
than
ever
beforeGenerative
AIisastep
changeintheevolutionofAIGenerativeAI
(GAI),thelatestevolution
in
artificialintelligence,
carriesthepotential
forsignificanteconomic
advancement.Theseinclude
thecommand
ofnatural
language,coding
and
mathematics,andthe
ability
to
plan
andproblemsolve.2Rule-based
systems(1950s-1960s):While
thefull
economic
impactwill
takeyearstorealise,GAI
isalreadyimpacting
arangeofsectorsacrosstheeconomy.Thisreportaimstofocusspecifically
onhowGAI
could
drive
value
fortheAustralian
economy,and
identify
thesteps
needed
toseizethisopportunity.Alongwith
improvedcapability,
innovations
intechnologyhave
alsoled
to
increased
accessibility
ofGAI
by
reducing
costs.ArtificialIntelligence
istheability
for
amachine
toperform
atask
typically
requiring
humanintelligence.Furthermore,thedevelopmentofmoreuser-friendlytoolsand
interfaceshas
madeGAI
more
accessible
toawider
rangeofusers.Forexample,someonline
platformsallowuserstoeasilycreateandmanipulate
GAImodelsusing
drag-and-drop
interfacesor
intuitive
sliders,evenif
theyhavelittle
to
noexperiencein
machine
learning.
Notonly
hasthisdemocratisedGAI,improved
accessibility
createsawider
rangeofuse-cases
forbusinesses
and
workersacrossall
sectors
oftheeconomy.Historically,
thesetasks
havebeenlimited
topattern
recognition
and
processing,withimprovementsin
complexity
and
accuracydeveloping
overtime.Statisticallearning(1970s-1990s)GAI,asubset
ofartificial
intelligence,
usesmachinelearning
togenerate
human-like
content.
It
signifies
aconsiderable
transformationin
theeconomic
prospectsofAI
atlarge,byempoweringmachines
toproducenovel
content
or
data,previously
unseenorunimagined.Deep
Learning(2000s-present):Generative
AIisastepchange
frompreviousevolutionsofAI.Aswellas
recognisingcomplexpatternsand
processingdata,
it
can
create
novelcontentinresponseto
user
prompts.Recentimprovementsin
computing
hardwareandinfrastructure,
along
with
theavailability
oflarge-scaleand
diversetraining
datasets,
havebeen
instrumental
inenabling
thedevelopmentoflarger
and
morepowerfulGAI
modelsthan
ever
before.
One
ofthemostnotableinnovations
in
deeplearning
architectures
camein2017
with
theTransformer
architecture1,
whichfacilitates
parallelprocessingofsequencesandtheuseofattention
mechanismsfortrackinglong-rangewordrelations.This
innovation,
combined
withAdditionally,
modernGAI
modelsarealreadybeingfine-tuned
forspecific
usecases.This
hasmadeit
easierfor
developers,researchers,
and
businessestouseGAIin
their
applications
without
having
tospendtimeandGenerative
AI(2010s-present)Advancements
in
computing
hardware,infrastructure
and,mostnotably,deeplearningarchitectures
such
as
Transformers1
haveenabledthedevelopmentoflarger
and
more
capableGAImodels.LargeLanguageModels(LLMs)
pretrainedonextremelylargedatasetsgenerate
human-likeand
coherent
textand
canbefine-tuned
for
specifictasks.resourcesontraining
theirownmodelsfromscratch.Together,
theimproved
computing
andaccessibility
ofGAI
means
it
isalreadychanging
how
weworkandthewayfirmsoperate.
It
isaugmenting
human
workers
byacting
asacopilot,
increasing
productivity
and
qualityin
various
industries,
aswell
ascreating
newjobs
andbusinesses.advancementsin
optimisationtechniques,
hasfacilitated
thedevelopmentoflarger,faster,
and
moresophisticated
GAImodels.Foundational
largelanguage
models(2018-present)Asmodelsbecome
larger,they
developpowerful‘emergent
capabilities’
that
areonly
possiblewhen
themodelreachesacertain
scale.
No
longerlimited
tocompleting
narrowtasks
basedonanarrowrangeofprompts,
modernGAImodelscannow
perform
more‘generalist’functions.Such
‘foundational
models’provide
aplatformforapplications
tobebuilt
ontop,leading
toevenmoreusecases
and
wider
accessibility.Applicationsof
LLMs(2023+)Copyright
©2023
TechnologyCouncil
ofAustralia.
All
rightsreserved.Notes:
1.Vaswani,Aet
al.
(2017).
Attention
Is
All
You
Need.(Link).
2.Eloundou,
T.Manning,S.
Mishkin,P.
Rock,
D.
(2023)
GPTsare
GPTs:AnEarlyLookat
theLabourMarket
ImpactPotential
ofLarge
Language
Models.
(Link)Section1Generative
AI
modelshave
awiderange
ofapplications
and
cancreate
value
throughtheir
distinctive
capabilitiesAnoverviewof
Generative
AIGAI
cancreatenovel
content
in
response
touserprompts.
Thegenerationofthis
content
isprincipally
handled
byfoundational
modelssuchasLargeLanguageModels
(LLMs)
that
aredeepneural
networks.Thesemodelsarebuilt
onrobustcomputing
infrastructure
and
depend
onCloudlargedatasetsfor
training.
Toenhance
theaccessibility
and
usability
ofLLMs,reinforcement
learning
techniques
thatencouragehuman-like
responses
and
intuitiveinterfacesareintegral
componentsoftheGAIframework.Foundationalmodels(e.g.LLMs)Modelfine-tuning(e.g.RLHF1)infrastructureandcomputerhardwareNeural
networks&deeplearningInterfaces
&applicationsTrainingdataComponentsofGenerative
AIAsit
evolves,GAI
promises
to
deliver
immensevalue
acrossseveralfacets.Oneoftheseisautomation,whereGAIcan
expediteprocessesand
minimise
timespentonrepetitiveadministrative
tasks.
In
thecreation
domain,itcan
helpgenerate
new
ideas
in
areas
such
asproduct
design
andcontent
creation.
It
canalsoplayanadvisory
role,acting
asacopilot
guidingworkers
through
complex
issues.Furthermore,GAI
allowstheexploration,interrogation,
andsynthesisoflargedatasets,
leading
to
improveddatacomprehensionand
moreinsightfuldecision-making.Automating
Reducingtheneedfor
humanstoengageintime-consumingadmintasksCreating
Generatingnew
ideasinareas
suchasproduct
designandcontent
creationAdvising
Acting
as
copilots,
guidingworkers
through
complex
problemsValue
deliveredExploration
Enablesexploration,
interrogation
and
synthesis
of
large
datasetsfor
improved
understandingTextCode&dataImageAudio
&voiceVoice
synthesisPatientcareVideo&3DMultimodalmodels(can
processandoutputmultipletypesof
data)Marketing
&salesImagegenerationVideoeditingTypesofmodelsExample
usageCode
generationData
explorationWebsite
buildersandgenerationTheversatility
ofGAIis
underscored
bytherangeofits
models,extending
fromtextandcodegenerationto
thecreation
ofimages,
audio
andvoice,video,
and
3D
content.
Eachofthesemodelsushersin
unique
use-cases,
therebyemphasisingthefar-reaching
applications
andeconomic
benefitsofGAI.Knowledgemanagement3DmodelgenerationDesignSocial
mediacontentCustomersupportGaming&metaverseResearchNotes:
Reinforcement
Learningthrough
Human
Feedback
(RLHF)–process
used
to
further
refineandtrain
models
like
InstructGPTandChatGPT
(Link)Copyright
©2023
TechnologyCouncil
ofAustralia.
All
rightsreserved.Section1Generative
AI
isalready
creating
value
bycopiloting
different
typesof
workFivewaysGenerative
AIisalreadycopiloting
workThedeveloperThecreativeWhile
coding
companionsaren’tnew1,GAI-powered
companionssurpass
existingtechnologyby
being
able
tounderstand
acoder‘saims
andsuggest
an
entirely
newapproachtosolving
aproblem.This
allowscoderstodomore
high-valuethinking,includingcollaborating
withproductmanagers
tothink
carefullyaboutthedesired
end-user
experience.
Additionally,GAI
cantranslatenaturallanguagetocode,making
coding
askillsetavailable
toall.GAI
canhandlerepetitive
andtime-consumingtasks
–allowing
creativestofocusonhigher-leveltasks
such
as
creative
direction,
ideation,
andstrategy.
DALL-E,
anAIsystem
developed
byOpenAI,
cangenerate
high-quality
imagesbasedontextual
descriptions,
whichcanbeuseful
foradvertising,marketing,
andbranding.
AnotherexampleisCopy.ai,
anAI-powered
tool
thatcouldbeused
togenerate
human-like
textforads,productdescriptions,
andsocial
media
posts.Generative
AIassists
workers
intwo
key
ways.First,
byautomating
well-defined
and
highlyrepetitive
tasks,
GAIallows
workers
tospend
moretime
onthemorecomplexaspects
oftheir
jobs.Importantly,
this
islikelytoimprove
jobsatisfaction
for
all
workers.
Second,
GAIcanaugment
and
assist
workers
tocompletethesemorecomplextasks.
For
example,theability
tosuggeststep-by-step
problemsolving
instructions
means
GAIisguiding
workers
through
new
skills
and
new
ways
ofapproaching
problems.In2022,14%of
surveyed
creatives
were
already
usingGenerative
AIintheir
work3Users
of
GAI
coding
companions
complete
tasks
in56%less
time
than
non-users2TheresearcherThesalespersonThemanagerGAI
canprovidehyper-personalisedGAI
canhelpmanagers
stayintune
withtheirteamby
supporting
communication,
creatingtrainingmaterials,identifying
trends
inemployeesentiment,
andanalysingperformance
data.Additionally,
GAI
canallow
easieraccesstobusiness
intelligence,analysingcompanydatatoassistmanagers
incompletingrequest
forproposals(RFPs),
understanding
clients,
andassisting
resourceplanning.GAI
canbeavaluable
copilot
forresearchers.Through
interactive
conversations,GAI
modelscanhelpresearchers
thinkthrough
complexproblems
anddevelopframeworks
tostructureresearch
projects.
Furthermore,
GAI
canassistwith
writingtasks,
such
as
generating
outlines,suggesting
wordchoices,
andproofreading.Image-based
modelscanalsoincreasethesizeofdatasets,
by
creatingrealistic
synthetic
images(forexample,
ofbiological
structures)
thatassistresearch.intelligencetoimprove
customer
interactions.Thiscouldincludecrafting
personalisedengagements
based
oncustomer
dataandpreferences,
generating
engaging
marketingmaterials,creatinginteractive
productdemosandproviding
real-timelanguagetranslationduring
salescalls
with
non-nativespeakers.Thisleadstoamorestreamlined
andinteractive
experience
forthe
customer.AlphaFold2
has
predicted
the
3Dcoordinates
of
over375,000protein
structures,
significantly
acceleratingresearch
instructural
biology6GAI
conversational
assistants
help
customer
supportagents
resolve
14%more
issues
per
hour4GAI
tools
havebeen
shown
to
reduce
the
time
ofwriting
tasks
by
37%,withimproved
quality5Notes:
1.Oneofthe
first
Integrateddevelopment
environment
(IDE),Turbo
Pascal,wasreleased
in
1983.2.
Kalliamvakou,E(2022).
Research:
quantifying
GithubCopilot’s
impact
ondeveloper
productivity
andhappiness.
3.Shutterstock
(2022)Whatdo
creators
thinkaboutGenerative
AI.
4.Brynjolfssonet
al(2023)
Generative
AIatwork.
WorkingPaper.
NBER5.Noy
andZhang(2023)ExperimentalEvidenceonthe
productivity
effectsof
Generative
Artificial
Intelligence.
WorkingPaper.
MIT.6.Jones
DT,Thornton
JM.
(2022)
Theimpact
ofAlphaFold2
oneyearon.NatMethods.2022Jan;19(1):15-20Copyright
©2023
TechnologyCouncil
ofAustralia.
All
rightsreserved.10Section1InAustralia,
Generative
AI
can
deliver
economicvalue
byimprovingexisting
industriesandcreating
new
productsandservicesGenerativeAI
hasthepotential
to
deliver
significanteconomic
value
to
theAustralian
economythroughtwomajor
channels:
improvementsto
existingindustries
and
thecreationofnewproducts
andservices.Acrossall
industries,
such
augmentationand
theresulting
gainsin
quality
can
leadtoincreasedcustomer
satisfaction,
loyalty,
andretention,generatingaquality
‘premium’that
drives
value
to
theeconomy.Thetwochannelsof
economic
valuecreated
byGenerative
AITotal
economic
value
fromGenerative
AIImprovements
to
existing
industriesFirstly,
adoption
ofthetechnologyin
existingindustries
drives
higher
productivity
and
quality.Newproducts
and
servicesSecondly,
GAIcan
enablethedevelopmentofnewproducts
andservicesthat
werenot
previouslypossible,such
ashighly
personalisedcontent,conversational
virtual
assistants,andinteractivewearablehealth
devices.
Thiscan
leadt
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 26《好的故事》说课稿-2024-2025学年语文六年级上册统编版
- 1场景歌说课稿-2024-2025学年统编版语文二年级上册
- 2024年秋一年级道德与法治下册 第二单元 我和大自然 5 风儿轻轻吹说课稿 新人教版
- 18古诗三首浪淘沙(其一)说课稿-2024-2025学年六年级上册语文统编版
- 8 设计制作小车(二) 说课稿-2024-2025学年科学四年级上册教科版
- 23《月光曲》说课稿-2024-2025学年语文六年级上册统编版
- 1 24时计时法(说课稿)-2024-2025学年三年级上册数学人教版001
- 2023九年级道德与法治上册 第三单元 文明与家园 第五课 守望精神家园第2框 凝聚价值追求说课稿 新人教版
- 2025北京市饲料采购合同新
- 2025建造船舶所要用到的合同
- 农产品贮运与加工考试题(附答案)
- 学校财务年终工作总结4
- 2025年人民教育出版社有限公司招聘笔试参考题库含答案解析
- 康复医学治疗技术(士)复习题及答案
- 《血管性血友病》课件
- 2025年汽车加气站作业人员安全全国考试题库(含答案)
- 2024年司法考试完整真题及答案
- 高三日语一轮复习日语助词「に」和「を」的全部用法课件
- 2024年山东省高考政治试卷真题(含答案逐题解析)
- 2024年执业药师继续教育专业答案
- 2024-2025学年人教版七年级数学上册期末达标测试卷(含答案)
评论
0/150
提交评论