整数乘法运算定律推广到分数教学设计_第1页
整数乘法运算定律推广到分数教学设计_第2页
整数乘法运算定律推广到分数教学设计_第3页
整数乘法运算定律推广到分数教学设计_第4页
整数乘法运算定律推广到分数教学设计_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

《整数乘法运算定律推广到分数(例6、7)》教学设计教学内容:人教版小学数学教材六年级上册第8~9页例6、例7及相关练习。教学目标:1.使学生通过观察、猜测、推理、验证等数学活动理解整数乘法运算定律对于分数乘法同样适用,并能应用运算定律进行一些简便计算。2.在计算过程中,培养学生细心观察、根据具体情况灵活应用所学知识解决问题的能力。3.培养学生探索数学问题的兴趣,使其在自主探究、合作交流中体验成功的喜悦。教学重点:培养学生应用运算定律进行一些简便计算的能力。教学难点:培养学生细心观察、根据具体情况灵活应用所学知识的能力。教学准备:课件教学过程:一、复习导入(一)激疑引入1.教师在黑板上出示两个算式:21×3

3×21。同学们,这两个算式相等吗?(学生显然能得出相等,教师用等号连接)21×3=3×21。2.看到这个等式,你想起了什么知识?(乘法交换律)3.用字母可以表示为:。这里的字母你觉得可以表示哪些数呢?4.和可以表示分数,这只是你们的猜测。下面请你独立思考,举例验证这个猜测。5.交流反馈:整数乘法交换律在分数乘法中同样适用,此时你还想到了哪些定律呢?(二)点明课题师:今天我们就来学习和研究整数乘法运算定律推广到分数。【设计意图】从学生原有的知识经验入手,利用知识的正迁移和同化与顺应的心理基础,使学生通过猜测、举例验证得出“整数乘法交换律在分数乘法中同样适用”,使其获得成功的喜悦。这样既培养了学生观察、猜测、验证的数学思维能力,又培养了学生口头表达的能力,使其能既有条理又较为清晰地表述自己的思考过程。同理,利用这样的数学思想,得出其他两个运算定律的应用。二、探究新知(一)合作学习,展开验证1.刚才同学们还想到了乘法结合律和乘法分配律,那么这里的字母也可以表示分数吗?下面请同桌合作,举例验证。2.同桌合作,举例验证。合作要求:(1)举例说明①请同桌各写出一个算式并计算出结果,如或;②同桌交换,计算出利用运算定律后的结果,如或。③对照两者的结果是否相等。(2)能否举出一个不相等的例子?(3)得出结论。3.全班交流反馈,请几个小组来交流验证过程。4.小结:整数乘法交换律、结合律和分配律对于分数乘法同样适用。【设计意图】学生通过独立思考、同桌合作、全班交流反馈的形式,经历猜测、举例验证、尝试举反例、得出结论这样的数学活动过程,激发了学生探究数学知识的兴趣,渗透了科学的探究方法。这一过程,学生始终是知识建构的主人,充分体现了学生的主体地位。(二)实践新知,应用提高1.我们花了那么多时间和精力为了得出这一个结论,应该怎样应用呢?2.独立尝试。(1)出示:

(2)思考:选择什么运算定律才能使计算简便?(3)计算3.小组交流。四人小组合作交流,讨论:(1)计算中运用了什么运算定律?(2)这样计算,为什么能使计算简便?4.全班反馈第一题:

=×5×(应用了乘法交换律,可约分)

=3×

=第二题:

=×12+×12(应用了乘法分配律,可约分)

=10+3

=135.小结:应用乘法运算定律,能使一些分数混合运算变得简便。

【设计意图】学生通过独立思考、小组交流、全班反馈,得到“应用乘法运算定律,能使一些分数混合运算变得简便”的结论,使学生体验到获得成功的喜悦,更能够激发其学习的兴趣。

三、练习巩固

1.请独立完成教材第9页的“做一做”。(1)××3

87×选择合适的运算定律,使计算简便。第3小题,思考87与的分母之间有什么联系,怎样做可以进行约分呢?(2)奶牛场每头奶牛平均日产牛奶t,42头奶牛100天可产奶多少吨?每头奶牛每天产奶t,那么42头奶牛每天产奶t。求这些奶牛100天产奶的数量,可以列出的算式为:。2.出示:

(1)请同学们仔细观察这两题,动笔前先思考怎样算比较简便?学生独立计算。(2)第一题用乘法分配律进行简便计算大家都没有异议;第二题到底如何?两种方法都试试看,比较得出结论,其实用乘法分配律并不简单。(3)第二题的数怎么改一下用乘法分配律就比较简单了呢?(4)做了这两题,你有什么体会?【设计意图】引导学生先观察后计算,有利于学生细心观察,养成良好的计算习惯。同时让学生通过计算自己感悟,并不是任何计算都是用乘法分配律简便。针对封闭的计算题采用了开放式教学,为计算练习注入了活力,学生兴趣高涨,思维活跃。3.开放练习:在□中填上适当的数,使计算简便。

×15×□

×+×□

(+□)×□

【设计意图】开放式习题的设计,把学生所学的知识和已掌握的解题能力巧妙地融合在一起,既使学生巩固乘法运算定律的运用,弄清了知识之间的联系和区别,又使学生的知识得到了整合,提高了学生的发散思维能力。四、课堂小结通过本节课的学习,你掌握了哪些知识?你是怎样获得这些知识的?你还有哪些疑问?五、随堂作业独立完成教材第12页练习二的第12、13、14题。教学反思:这一课,我主要做到:一、注重了情境的导入,提高孩子们的参与热情。本节课,开启课时,我注重从孩子的身边挖掘素材,引出整数乘法运算定律,加以复巩固,紧接着引导学生回忆这些运算定律曾经运用到什么知识中,引导到小数乘法的简算中,为后面的新知学习打下良好的基础。真正达到了“以旧导新,以旧带新”的效果。二、鼓励学生大胆的质疑与猜想,激发学生内在的求知动力。在新授课时,我设计的两个环节,引起了学生强烈的求知欲望。第一,在复习完后,我让学生自己说说,你现在最想研究一个什么样的问题?孩子们表现出空前的热情,比如有的孩子谈到想研究一下整数乘法运算定律是否可以推广到分数乘法?于是我鼓励学生根据已有的知识,去大胆的猜想。孩子们的思维活跃极了,甚至大大超出了我事先的预料;第二,在探究确认上述问题后,我又让学生大胆的质疑,定律推广到分数乘法中会起到什么作用呢?真的能简便吗?孩子的好奇心又一次被激起,他们又乐此不疲的投入到了简算的探究中去。整堂课下来,孩子们始终处在“质疑——猜想——验证”的学习过程中,真正变成了学习的主人。三、需要改进之处:①对学生的多样思维应加大评价力度。比如:在开始情境导入这一环节中,学生除了出现4×(2+3)4×2+4×3两种做法外,还出现了4×2×2+4这样的做法,虽然这种做法与本节课要研究的问题没有多大的联系,但老师却不应忽视孩子多样化的思维方式,应及时给予肯定,并加以合理的评价。再比如:孩子们在猜想整数乘法运算定律是否可以推广到分数乘法时,有一个孩子说到她是想到了整数加法的运算定律可以推广到分数加法,所以断定也能推广到乘法。这里,我给予了肯定,但力度不够。以上可以看出,评价一个孩子,要适时,适当,决不能敷衍,更不能抹杀,否则可能会压制孩子的思维积极性。这一点,在今后的教学

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论