版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年贵州省遵义市单招数学自考预测试题库(含答案)学校:________班级:________姓名:________考号:________
一、单选题(50题)1.与直线x-y-7=0垂直,且过点(3,5)的直线为()
A.x+y−8=0B.x-y+2=0C.2x-y+8=0D.x+2y+1=0
2.函数=sin(2x+Π/2)+1的最小值和最小正周期分别为()
A.1和2πB.0和2πC.1和πD.0和π
3.在空间中,直线与平面的位置关系是()
A.平行B.相交C.直线在平面内D.平行、相交或直线在平面内
4.抛物线y²=4x的准线方程是()
A.x=-1B.x=1C.y=-1D.y=-1
5.若向量a,b,c满足a∥b且a⊥c,则c·(a+2b)=()
A.4B.3C.2D.0
6.从甲地到乙地有3条路线,从乙地到丙地有4条路线,则从甲地经乙地到丙地的不同路线共有()
A.3种B.4种C.7种D.12种
7."x<0"是“ln(x+1)<0”的()
A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件
8.设定义在R上的函数y=f(x)是奇函数,f(x)在区间(0,+∞)上为增函数,则f(2),f(4),-f(-3)之间的大小关系是()
A.f(2)<-f(-3)
B.f(2)<f(4)<-f(-3)
C.-f(-3)<f(4)
D.f(4)<f(2)<-f(-3)
9.已知f(x)=ax³+bx-4,其中a,b为常数,若f(-2)=2,则f(2)的值等于()
A.-2B.-4C.-6D.-10
10.某市教委为配合教育部公布高考改革新方案,拟定在B中学生进行调研,广泛征求高三年级学生的意见。B中学高三年级共有700名学生,其中理科生500人,文科生200人,现采用分层抽样的方法从中抽取14名学生参加调研,则抽取的理科生的人数为()
A.2B.4C.5D.10
11.从某班的21名男生和20名女生中,任意选一名男生和一名女生代表班级参加评教座谈会则不同的选派方案共有()
A.41种B.420种C.520种D.820种
12.将一个容量为40的样本分成若干组,在它的频率分布直方图中,若其中一组的相应的小长方形的面积是0.4,则该组的频数等于()
A.4B.6C.10D.16
13.已知角α终边上一点的坐标为(-5,-12),则下列说法正确的是()
A.sinα=12/13B.tanα=5/12C.cosα=-12/13D.cosα=-5/13
14.函数y=是√(3-x)的定义域为()
A.{x|x≠3}B.{x|x<=3}C.{x|x<3}D.{x|x>=3}
15.“|x-1|<2成立”是“x(x-3)<0成立”的(
)
A.充分而不必要条件B.充分而不必要条件C.充分必要条件D.既不充分也不必要条件
16.不等式|x-1|<2的解集为()
A.y=x²B.y=x²-xC.y=x³D.y=1/x
17.以圆x²+2x+y²=0的圆心为圆心,半径为2的圆的方程()
A.(x+1)²+y²=2B.(x+1)²+y²=4C.(x−1)²+y²=2D.(x−1)²+y²=4
18.已知{an}为等差数列,a1+a3+a5=105,a2+a4+a6=99,则a20等于()
A.-1B.1C.3D.7
19.已知圆x²+y²=a与直线z+y-2=0相切,则a=()
A.2√2B.2C.3D.4
20.等差数列{an}的前5项和为5,a2=0则数列的公差为()
A.1B.2C.3D.4
21.过点P(1,-1)垂直于X轴的直线方程为()
A.x+1=0B.x-1=0C.y+1=0D.y-1=0
22.log₁₀1000等于()
A.1B.2C.3D.4
23.以点P(-4,3)为圆心的圆与直线2x+y-5=0相离,则圆半径取值范围是()
A.(0,2)B.(0,√5)C.(0,2√5)D.(0,10)
24.不等式|x-5|≤3的整数解的个数有()个。
A.5B.6C.7D.8
25.已知α为第二象限角,点P(x,√5)为其终边上的一点,且cosα=√2x/4,那么x=()
A.√3B.±√3C.-√2D.-√3
26.设集合A={1,2,3},B={1,2,4}则A的∪B=()
A.{1,2}B.{1,2,3}C.{1,2,4}D.{1,2,3,4}
27.同时掷两枚骰子,所得点数之积为12的概率为()
A.1/12B.1/4C.1/9D.1/6
28.已知sinθ+cosθ=1/3,那么sin2θ的值为()
A.2√2/3B.-2√2/3C.8/9D.-8/9
29.在一个口袋中有除了颜色外完全相同的5个红球3个黄球、2个蓝球,从中任意取出5个球,则刚好2个红球、2个黄球、1个蓝球的概率是()
A.2/5B.5/21C.1/2D.3/5
30.函数f(x)=ln(2-x)的定义域是()
A.[-2,2]B.(-2,2)C.(-∞,2)D.(-2,+∞)
31.不等式(x²-4x−5)(x²+8)<0的解集是()
A.{x|-1<x<5}
B.{x|x<-1或x>5}
C.{x|0<x<5}
D.{x|−1<x<0}
32.抛物线y²=8x的焦点为F,抛物线上有一点P的横坐标是1,则点P到焦点F的距离是()
A.2√2B.2C.3D.4
33.抛物线y²=4x的焦点为()
A.(1,0)B.(2,0)C.(3,0)D.(4,0)
34.已知α∈(Π/2,Π),cos(Π-α)=√3/2,则tanα等于()
A.-√3/3B.√3/3C.-√3D.√3
35.已知集合A={2,3,4},B={3,4,5},则A∩B()
A.{2,5}B.{2,3,4,5}C.{3,4}D.{3,5}
36.4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有()
A.12种B.24种C.30种D.36种
37.已知α为第二象限角,sinα=3/5,则sin2α=()
A.-24/25B.-12/25C.12/25D.24/25
38.已知全集U={1,2,3,4,5,6,7,8},M={1,3,5,7},N={4,5,6,7,8},则Cu(M∪N)=()
A.{2}B.{5,7}C.{2,4,8}D.{1,3,5,6,7}
39.函数y=1/2sin2x的最小正周期是()
A.4ΠB.Π/4C.2ΠD.Π
40.与y=sinx相等的是()
A.y=cos(x+Π)B.y=cos(x-Π)C.y=cos(Π/2-x)D.y=cos(Π/2+x)
41.已知y=f(x)是奇函数,f(2)=5,则f(-2)=()
A.0B.5C.-5D.无法判断
42.样本5,4,6,7,3的平均数和标准差为()
A.5和2B.5和√2C.6和3D.6和√3
43.两个正方体的体积之比是1:8,则这两个正方体的表面积之比是()
A.1:2B.1:4C.1:6D.1:8
44.已知一组样本数据是:7,5,11,9,8,则平均数和样本方差分别是()
A.6和8B.6和4C.8和4D.8和2
45.下列函数中在定义域内既是奇函数又是增函数的是()
A.y=x-3B.y=-x²C.y=3xD.y=2/x
46.已知向量a=(1,1),b=(0,2),则下列结论正确的是()
A.a//bB.(2a-b)⊥bC.2a=bD.a*b=3
47.函数f(x)=x²-2x-3()
A.在(-∞,2)内为增函数
B.在(-∞,1)内为增函数
C.在(1,+∞)内为减函数
D.在(1,+∞)内为增函数
48.已知圆锥曲线母线长为5,底面周长为6π,则圆锥的体积是().
A.6πB.8πC.10πD.12π
49.在复平面内,复数z=i(-2+i)对应的点位于()
A.第一象限B.第二象限C.第三象限D.第四象限
50.已知角α的终边上一点P(-3,4),则cosα的值为()
A.3/5B.4/5C.-3/5D.-4/5
二、填空题(20题)51.小明想去参加同学会,想从3顶帽子、5件衣服、4条子中各选一样穿戴,则共有________种搭配方法。
52.以点M(3,1)为圆心的圆与x轴相交于A,B两点若🔺MAB为直角三角形、则该圆的标准方程为________。
53.已知数据x,8,y的平均数为8,则数据9,5,x,y,15的平均数为________。
54.从1到40这40个自然数中任取一个,是3的倍数的概率是()
55.不等式|1-3x|的解集是_________。
56.已知f(x)=x+6,则f(0)=____________;
57.以点(2,1)为圆心,且与直线4x-3y=0相切的圆的标准方程为__________。
58.已知数据x₁,x₂,x₃,x₄,x₅,的平均数为80,则数据x₁+1,x₂+2,x₃+3,x₄+4,x₅+5的平均数为________。
59.若等边三角形ABC的边长为2,则,AB·BC=________。
60.设{an}是等差数列,且a₃=5,a₅=9,则a₂·a₆=()
61.已知等差数列{an}中,a₈=25,则a₇+a₈+a₉=________。
62.若直线2x-y-2=0,与直线x+ay+1=0平行,则实数a的取值为_____________。
63.设圆的方程为x²+y²-4y-5=0,其圆心坐标为________。
64.已知过抛物线y²=4x焦点的直线l与抛物有两个交点A(x₁,y₁)和B(x₂,y₂)如果x₁+x₂=6,则|AB|=_________。
65.不等式|8-2x|≤3的解集为________。
66.已知平面向量a=(1,2),=(一2,1),则a与b的夹角是________。
67.已知二次函数y=x²-mx+1的图象的对称轴方程为=2则此函数的最小值为________。
68.将一个容量为n的样本分成3组,已知第1,2组的频率为0.2,0.5,第三组的频数为12,则n=________。
69.已知函数y=f(x)是奇函数,且f(2)=−5,则f(−2)=_____________;
70.已知点A(1,2)和点B(3,-4),则以线段AB的中点为圆心,且与直线x+y=5相切的圆的标准方程是________。
三、计算题(10题)71.已知sinα=1/3,则cos2α=________。
72.已知三个数成等差数列,它们的和为9,若第三个数加上4后,新的三个数成等比数列,求原来的三个数。
73.圆(x-1)²+(x-2)²=4上的点到直线3x-4y+20=0的最远距离是________。
74.已知tanα=2,求(sinα+cosα)/(2sinα-cosα)的值。
75.解下列不等式:x²≤9;
76.求函数y=cos²x+sinxcosx-1/2的最大值。
77.已知在等差数列{an}中,a1=2,a8=30,求该数列的通项公式和前5项的和S5;
78.书架上有3本不同的语文书,2本不同的数学书,从中任意取出2本,求(1)都是数学书的概率有多大?(2)恰有1本数学书概率
79.数列{an}为等差数列,a₁+a₂+a₃=6,a₅+a₆=25,(1)求{an}的通项公式;(2)若bn=a₂n,求{bn}前n项和Sn;
80.求证sin²α+sin²β−sin²αsin²β+cos²αcos2²β=1;
参考答案
1.D[答案]A[解析]讲解:直线方程的考查,两直线垂直则斜率乘积为-1,选A,经验证直线过点(3,5)。
2.D
3.D
4.A
5.D
6.D
7.B[解析]讲解:由ln(x+1)<0解得-1<x<0;然而x<0不能推出-1<x
8.A
9.D
10.D分层抽样就是按比例抽样,由题意得:抽取的理科生人数为:14/700*500=10选D.考点:分层抽样.
11.B
12.D
13.D
14.B
15.B[解析]讲解:解不等式,由|x-1|<2得xϵ(-1,3),由x(x-3)<0得xϵ(0,3),后者能推出前者,前者推不出后者,所以是必要不充分条件。
16.A
17.B[解析]讲解:圆的方程,重点是将方程化为标准方程,(x+1)²+y²=1,半径为2的话方程为(x+1)²+y²=4
18.B
19.C
20.AS5=(a1+a5)/2=5,a1+a5=2,即2a3=2,a3=1,公差d=a3-a2=1-0=1.考点:等差数列求公差.
21.B
22.C
23.C
24.C[解析]讲解:绝对值不等式的化简,-3≤x-5≤3,解得2≤x≤8,整数解有7个
25.D
26.D
27.C
28.D
29.B
30.C
31.A[解析]讲解:一元二次不等式的考察,由于括号内x²+8始终是大于0的,所以整体的正负是由前一个括号控制的,所以等价于x²-4x−5<0,解得1<x<5
32.C
33.A抛物线方程为y²=2px(p>0),焦点为(P/2,0),2p=4,p=2c,p/2=1。考点:抛物线焦点
34.A
35.C
36.B[解析]讲解:C²₄*2*2=24
37.A因为α为第二象限角,故cosα<0而sinα=3/5,cosα=-√1-sin²α=-4/5,所以sin2α=2sinαcosα=-24/25,故选A.考点:同角三角函数求值.感悟提高:已知sina或cosa,求sina或cosa时,注意a的象限,确定所求三角函数的符合,再开方.
38.A[解析]讲解:集合运算的考察,M∪N={1,3,4,5,6,7,8},Cu(M∪N)={2}选A
39.D
40.C[解析]讲解:考察诱导公式,“奇变偶不变,符号看象限”,A,B为余弦,C,D为正弦,只有C是正的,选C
41.C依题意,y=f(x)为奇函数,∵f(2)=5,∴f(-2)=-f(2)=-5,故选C.考点:函数的奇偶性应用.
42.B
43.B[解析]讲解:由于立方体的体积为棱长的立方,当体积比为1:8的时候,棱长比就应该为1:2,表面积又是六倍棱长的平方,所以表面积之比为1:4。
44.C
45.C
46.B
47.D
48.D立体图形的考核,底面为一个圆,周长知道了,求得半径为3,高可以用勾股定理求出为4,得出体积12π
49.C
50.C
51.60
52.(x-3)²+(y-1)²=2
53.9
54.13/40
55.(-1/3,1)
56.6
57.(x-2)²+(y-1)²=1
58.83
59.-2
60.33
61.75
62.-1/2
63.y=(1/2)x+2y
64.8
65.[5/2,11/2]
66.90°
67.-3
68.40
69.5
70.(x-2)²+(y+1)²=8
71.7/9
72.解:设原来三个数为a-d,a,a+d,则(a-d)+a+(a+d)=9所以3a=9,a=3因为三个数为3-d,3,3+d又因为3-d,3,7+d成等比数列所以(3-d)(7+d)=3²所以d=2或d=-6①当d=2时,原来这三个数为1,3,5②当d=-6时,原来三个数为9,3,-3
73.5
74.解:(sinα+cosα)/(2sinα-cosα)=(sinα/cosα+cosα/cosα)/(2sinα/cosα-cosα/cosα)=(tanα+1)/(2tanα-1)=(2+1)/(2*2-1)=1
75.解:因为x²≤9所以x²-9≤0所以(x+3)(x-3)≤0所以-3≤x≤3所以原不等式的解集为{x|-3≤x≤3}
76.解:y=(1+cos2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度模特时尚品牌代言聘用合同-@-15
- 2025年度事业单位网络安全管理员劳动合同范本3篇
- 二零二五年度内墙涂料研发生产与品牌营销承包合同
- 2025年度智能晾晒系统配套个人木工装修合同3篇
- 2025年度个人闲置物品转让合同范本3篇
- 2025年度个人投资理财咨询服务合同范本8篇
- 2025年度个人住房贷款质押合同标准文本及贷款逾期处理规定3篇
- 2025年度个人房地产抵押借款合同电子签名版
- 二零二五年度农家乐民宿设施使用权转让合同4篇
- 2025年度个人股权收购与转让合同(资产重组版)3篇
- 射频在疼痛治疗中的应用
- 和平精英电竞赛事
- 四年级数学竖式计算100道文档
- “新零售”模式下生鲜电商的营销策略研究-以盒马鲜生为例
- 项痹病辨证施护
- 职业安全健康工作总结(2篇)
- 怀化市数字经济产业发展概况及未来投资可行性研究报告
- 07FD02 防空地下室电气设备安装
- 教师高中化学大单元教学培训心得体会
- 弹簧分离问题经典题目
- 部编版高中历史中外历史纲要(下)世界史导言课课件
评论
0/150
提交评论