版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
西藏拉萨市那曲二中2024届高一上数学期末复习检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知角的顶点在坐标原点,始边在轴非负半轴上,且角的终边上一点,则()A. B.C. D.2.已知函数的图象上关于轴对称的点至少有3对,则实数的取值范围是A. B.C. D.3.下列区间中,函数单调递增的区间是()A. B.C. D.4.函数是奇函数,则的值为()A.1 B.C.0 D.5.函数y=f(x)在R上为增函数,且f(2m)>f(﹣m+9),则实数m的取值范围是()A.(﹣∞,﹣3) B.(0,+∞)C.(3,+∞) D.(﹣∞,﹣3)∪(3,+∞)6.已知,则的值为()A.-4 B.C. D.47.在数学史上,一般认为对数的发明者是苏格兰数学家——纳皮尔(Napier,1550-1617年).在纳皮尔所处的年代,哥白尼的“太阳中心说”刚刚开始流行,这导致天文学成为当时的热门学科.可是由于当时常量数学的局限性,天文学家们不得不花费很大的精力去计算那些繁杂的“天文数字”,因此浪费了若干年甚至毕生的宝贵时间.纳皮尔也是当时的一位天文爱好者,为了简化计算,他多年潜心研究大数字的计算技术,终于独立发明了对数.在那个时代,计算多位数之间的乘积,还是十分复杂的运算,因此纳皮尔首先发明了一种计算特殊多位数之间乘积的方法.让我们来看看下面这个例子:
12345678…1415…272829248163264128256…1638432768…134217728268435356536870912这两行数字之间的关系是极为明确的:第一行表示2的指数,第二行表示2的对应幂.如果我们要计算第二行中两个数的乘积,可以通过第一行对应数字的和来实现.比如,计算64×256的值,就可以先查第一行的对应数字:64对应6,256对应8,然后再把第一行中的对应数字加和起来:6+8=14;第一行中的14,对应第二行中的16384,所以有:64×256=16384,按照这样的方法计算:16384×32768=A.134217728 B.268435356C.536870912 D.5137658028.“是钝角”是“是第二象限角”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件9.已知,,,则()A. B.C. D.10.已知集合,或,则()A.或 B.C. D.或二、填空题:本大题共6小题,每小题5分,共30分。11.函数的部分图象如图所示.则函数的解析式为______12.某种候鸟每年都要随季节的变化而进行大规模的迁徙,研究候鸟的专家发现,该种鸟类的飞行速度(单位:m/s)与其耗氧量之间的关系为(其中、是实数).据统计,该种鸟类在耗氧量为80个单位时,其飞行速度为18m/s,则________;若这种候鸟飞行的速度不能低于60m/s,其耗氧量至少要________个单位.13.已知集合A={0,1,2,3,4,5},集合B={1,3,5,7,9},则Venn图中阴影部分表示的集合中元素的个数为________14.若函数与函数的最小正周期相同,则实数______15.函数定义域是____________16.若幂函数是偶函数,则___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)当时,求函数的零点;(2)若不等式在时恒成立,求实数k的取值范围.18.如图,四棱锥P-ABCD的底面为平行四边形,M为PC中点(1)求证:BA∥平面PCD;(2)求证:AP∥平面MBD19.已知函数,(且.)(1)求的定义域,并判断函数的奇偶性;(2)设,对于,恒成立,求实数m的取值范围20.已知函数.(1)当时,求方程的解;(2)若,不等式恒成立,求的取值范围.21.设,其中(1)当时,求函数的图像与直线交点的坐标;(2)若函数有两个不相等的正数零点,求a的取值范围;(3)若函数在上不具有单调性,求a的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】根据任意角的三角函数的定义即可求出的值,根据二倍角的正弦公式,即可求出的值【题目详解】由题意,角的顶点在坐标原点,始边在轴非负半轴上,且角的终边上一点,所以,,所以故选:D2、D【解题分析】本题首先可以求出函数关于轴对称的函数的解析式,然后根据题意得出函数与函数的图像至少有3个交点,最后根据图像计算得出结果【题目详解】若,则,因为时,,所以,所以若关于轴对称,则有,即,设,画出函数的图像,结合函数的单调性和函数图像的凹凸性可知对数函数与三角函数在点处相交为临界情况,即要使与的图像至少有3个交点,需要且满足,即,解得,故选D【题目点拨】本题考查的是函数的对称性、对数函数以及三角函数的相关性质,主要考查如何根据函数对称性来求出函数解析式,考查学生对对数函数以及三角函数的图像的理解,考查推理能力,考查数形结合思想,是难题3、A【解题分析】解不等式,利用赋值法可得出结论.【题目详解】因为函数的单调递增区间为,对于函数,由,解得,取,可得函数的一个单调递增区间为,则,,A选项满足条件,B不满足条件;取,可得函数的一个单调递增区间为,且,,CD选项均不满足条件.故选:A.【题目点拨】方法点睛:求较为复杂的三角函数的单调区间时,首先化简成形式,再求的单调区间,只需把看作一个整体代入的相应单调区间内即可,注意要先把化为正数4、D【解题分析】根据奇函数的定义可得,代入表达式利用对数的运算即可求解.【题目详解】函数是奇函数,则,即,从而可得,解得.当时,,即定义域为,所以时,是奇函数故选:D【题目点拨】本题考查了函数奇偶性的应用,需掌握函数奇偶性的定义,同时本题也考查了对数的运算,属于基础题.5、C【解题分析】根据增函数的定义求解【题目详解】解:∵函数y=f(x)在R上为增函数,且f(2m)f(﹣m+9),∴2m﹣m+9,解得m3,故选:C6、A【解题分析】由题,解得.故选A.7、C【解题分析】先找到16384与32768在第一行中的对应数字,进行相加运算,再找和对应第二行中的数字即可.【题目详解】由已知可知,要计算16384×32768,先查第一行的对应数字:16384对应14,32768对应15,然后再把第一行中的对应数字加起来:14+15=29,对应第二行中的536870912,所以有:16384×32768=536870912,故选C.【题目点拨】本题考查了指数运算的另外一种算法,关键是认真审题,理解题意,属于简单题.8、A【解题分析】根据钝角和第二象限角的定义,结合充分性、必要性的定义进行判断即可.【题目详解】因为是钝角,所以,因此是第二象限角,当是第二象限角时,例如是第二象限角,但是显然不成立,所以“是钝角”是“是第二象限角”的充分不必要条件,故选:A9、A【解题分析】比较a、b、c与中间值0和1的大小即可﹒【题目详解】,,,∴﹒故选:A﹒10、A【解题分析】应用集合的并运算求即可.【题目详解】由题设,或或.故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】由图象可得出函数的最小正周期,可求得的值,再由结合的取值范围可求得的值,即可得出函数的解析式.【题目详解】函数的最小正周期为,则,则,因为且函数在处附近单调递减,则,得,因,所以.所以故答案为:.12、①.6②.10240【解题分析】由初始值解出的值,然后令,可得出的取值范围,由此得出候鸟在飞行时速度不低于时的最低耗氧量.【题目详解】由题意,知,解得,所以,要使飞行速度不能低于,则有,即,即,解得,即,所以耗氧量至少要个单位.故答案为:6;10240【题目点拨】本题考查对数的应用,解题的关键就是要利用题中数据解出函数解析式,利用题意列出不等式进行求解.13、3【解题分析】由集合定义,及交集补集定义即可求得.【题目详解】由Venn图及集合的运算可知,阴影部分表示的集合为∁又A={0,1,2,3,4,5},B={1,3,5,7,9},∴A∩B={1,3,5},∴即Venn图中阴影部分表示的集合中元素的个数为3故答案为:3.14、【解题分析】求出两个函数的周期,利用周期相等,推出a的值【题目详解】:函数的周期是;函数的最小正周期是:;因为周期相同,所以,解得故答案为【题目点拨】本题是基础题,考查三角函数的周期的求法,考查计算能力15、【解题分析】根据偶次方根式下被开方数非负,有因此函数定义域,注意结果要写出解集性质.考点:函数定义域16、【解题分析】根据幂函数的定义得,解得或,再结合偶函数性质得.【题目详解】解:因为函数是幂函数,所以,解得或,当时,,为奇函数,不满足,舍;当时,,为偶函数,满足条件.所以.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】(1)由对数函数的性质可得,再解含指数的一元二次方程,结合指数的性质即可得解.(2)由题设有在上恒成立,判断的单调性并确定其值域,即可求k的范围.【小问1详解】由题设,令,则,∴,可得或(舍),∴,故的零点为.【小问2详解】由,则,即在上恒成立,∵在上均递减,∴在上递减,则,∴k的取值范围为.18、(1)见解析(2)见解析【解题分析】(1)根据平行四边形的性质可知,结合直线与平面平行的判定定理可得结论;(2)设,连接,由平行四边形的性质可知为中位线,从而得到,利用线面平行的判定定理,即可证出平面.【题目详解】证明(1)∵如图,四棱锥P-ABCD的底面为平行四边形,∴BC∥AD,又∵AD⊂平面PAD,BC⊄平面PAD,∴BC∥平面PAD;(2)设AC∩BD=H,连接MH,∵H为平行四边形ABCD对角线的交点,∴H为AC中点,又∵M为PC中点,∴MH为△PAC中位线,可得MH∥PA,MH⊂平面MBD,PA⊄平面MBD,所以PA∥平面MBD【题目点拨】本题主要考查线面平行的判定定理,属于中档题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面.19、(1)定义域为;为奇函数;(2)【解题分析】(1)由函数的定义域满足,可得其定义域,由可判断其奇偶性.(2)先由对数型函数的定义域可得,当时,由对数函数的单调性可得在上恒成立,即在上恒成立,即可得出答案.【题目详解】(1)由题意,函数,由,可得或,即定义域为;由,即有,可得为奇函数;(2)对于,恒成立,由,则,又,则由,即在上恒成立.由,即在上恒成立.由,可得时,y取得最小值8,则,因此可得,时,的取值范围是:【题目点拨】关键点睛:本题考查对数型函数的定义域和奇偶性的判断,不等式恒成立求参数问题,解答本题的关键是由对数型函数的定义域则满足,可得,然后将问题化为由,即在上恒成立,属于中档题.20、(1)或;(2)【解题分析】(1)由题意可得,由指数方程的解法即可得到所求解;(2)由题意可得,设,,,可得,即有,由对勾函数的单调性可不等式右边的最大值,进而得到所求范围【题目详解】(1)方程,即为,即有,所以或,解得或;(2)若,不等式恒成立可得,即,设,,可得,即有,由在递增,可得时取得最大值,即有
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 山东省淄博消防照明系统施工合同20242篇
- 学校彩钢瓦屋顶施工合同协议书
- 酒店康乐部协管员聘用合同
- 二零二四年度煤炭运输翻斗车租赁合同
- 橡胶制品增值税发票合规要点
- 法律顾问及咨询服务合同(2024年)2篇
- 2024年砂石场工人雇佣合同模板3篇
- 2024年广告代理合同样本3篇
- 2024年写字楼租赁合同续约模板3篇
- 2024年企业实习生培训合同3篇
- 中国常见食物营养成分表
- 甲状腺术后健康宣教首页课件
- 姜子牙动漫电影
- 维护社会稳定规定
- 《数学》课程中的杰出思政教学案例(一等奖)
- 小学教育专业职业生涯发展
- 23秋国家开放大学《视觉设计基础》形考任务1-5参考答案
- 2024年黑龙江高中学业水平合格性考试数学试卷试题(含答案详解)
- 德智体美劳五育融合心得体会
- 小学中华传统文化课件
- 律师事务所金融不良资产包收购与处置
评论
0/150
提交评论