2024届山东省滨州市惠民县中学数学高一上期末质量检测试题含解析_第1页
2024届山东省滨州市惠民县中学数学高一上期末质量检测试题含解析_第2页
2024届山东省滨州市惠民县中学数学高一上期末质量检测试题含解析_第3页
2024届山东省滨州市惠民县中学数学高一上期末质量检测试题含解析_第4页
2024届山东省滨州市惠民县中学数学高一上期末质量检测试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山东省滨州市惠民县中学数学高一上期末质量检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.直线l1的倾斜角,直线l1⊥l2,则直线l2的斜率为A.- B.C.- D.2.直线与直线平行,则的值为()A. B.2C. D.03.下列关于函数,的单调性叙述正确的是()A.在上单调递增,在上单调递减B.在上单调递增,在上单调递减C.在及上单调递增,在上单调递减D.在上单调递增,在及上单调递减4.下列指数式与对数式的互化不正确的一组是()A.100=1与lg1=0 B.与C.log39=2与32=9 D.log55=1与51=55.已知,则为()A. B.2C.3 D.或36.命题“,”的否定是A., B.,C., D.,7.如图所示的是用斜二测画法画出的的直观图(图中虚线分别与轴,轴平行),则原图形的面积是()A.8 B.16C.32 D.648.若函数的图象(部分)如图所示,则的解析式为()A. B.C. D.9.在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,若sinα=13A.-13C.-2210.下列结论中正确的是()A.当时,无最大值 B.当时,的最小值为3C.当且时, D.当时,二、填空题:本大题共6小题,每小题5分,共30分。11.______________.12.函数的图象恒过定点P,P在幂函数的图象上,则___________.13.已知圆,则过点且与圆C相切的直线方程为_____14.在ABC中,H为BC上异于B,C的任一点,M为AH的中点,若,则λ+μ=_________15.已知函数的值域为,则实数的取值范围是________16.如图所示,弧田是由圆弧和其所对弦围成的图形,若弧田的弧长为,弧所在的圆的半径为4,则弧田的面积是___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知角的顶点在坐标原点,始边与轴的非负半轴重合,终边经过点P(-3,4)(1)求,的值;(2)的值18.计算:(1)(2)19.已知曲线:.(1)当为何值时,曲线表示圆;(2)若曲线与直线交于、两点,且(为坐标原点),求的值.20.已知函数的图象关于直线对称,若实数满足时,的最小值为1(1)求的解析式;(2)将函数的图象向左平移个单位后,得到的图象,求的单调递减区间21.已知,,,,求.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】由题意可得L2的倾斜角等于30°+90°=120°,从而得到L2的斜率为tan120°,运算求得结果【题目详解】如图:直线L1的倾斜角α1=30°,直线L1⊥L2,则L2的倾斜角等于30°+90°=120°,∴L2的斜率为tan120°=﹣tan60°,故选C【题目点拨】本题主要考查直线的倾斜角和斜率的关系,体现了数形结合的数学思想,属于基础题2、B【解题分析】根据两直线平行的条件列式可得结果.【题目详解】当时,直线与直线垂直,不合题意;当时,因直线与直线平行,所以,解得.故选:B【题目点拨】易错点点睛:容易忽视纵截距不等这个条件导致错误.3、C【解题分析】先求出函数的一般性单调区间,再结合选项判断即可.【题目详解】的单调增区间满足:,即,所以其单调增区间为:,同理可得其单调减区间为:.由于,令中的,有,,所以在上的增区间为及.令中的,有,所以在上的减区间为.故选:C4、B【解题分析】根据指数式与对数式的互化逐一判断即可.【题目详解】A.1对数等于0,即,可得到:100=1与lg1=0;故正确;B.对应的对数式应为,故不正确;C.;故正确,D.很明显log55=1与51=5是正确的;故选:B.【题目点拨】本题考查指数式与对数式的互化,考查基本分析判断能力,属基础题.5、C【解题分析】根据分段函数的定义域求解.【题目详解】因为,所以故选:C6、C【解题分析】特称命题的否定是全称命题,并将结论加以否定,所以命题的否定为:,考点:全称命题与特称命题7、C【解题分析】由斜二测画法知识得原图形底和高【题目详解】原图形中,,边上的高为,故面积为32故选:C8、A【解题分析】根据正弦型函数最小正周期公式,结合代入法进行求解即可.【题目详解】设函数的最小正周期为,因为,所以由图象可知:,即,又因为函数过,所以有,因为,所以令,得,即,故选:A9、B【解题分析】根据终边关于y轴对称可得关系α+β=π+2kπ,k∈Z,再利用诱导公式,即可得答案;【题目详解】在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,∴α+β=π+2kπ,k∈Z,∵sinα=∴sin故选:B.【题目点拨】本题考查角的概念和诱导公式的应用,考查逻辑推理能力、运算求解能力.10、D【解题分析】利用在单调递增,可判断A;利用均值不等式可判断B,D;取可判断C【题目详解】选项A,由都在单调递增,故在单调递增,因此在上当时取得最大值,选项A错误;选项B,当时,,故,当且仅当,即时等号成立,由于,故最小值3取不到,选项B错误;选项C,令,此时,不成立,故C错误;选项D,当时,,故,当且仅当,即时,等号成立,故成立,选项D正确故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、2【解题分析】由对数的运算法则直接求解.【题目详解】故答案为:212、64【解题分析】由题意可求得点,求出幂函数的解析式,从而求得.【题目详解】令,则,故点;设幂函数,则,则;故;故答案为:64.13、【解题分析】先判断点在圆上,再根据过圆上的点的切线方程的方法求出切线方程.【题目详解】由,则点在圆上,,所以切线斜率为,因此切线方程,整理得.故答案为:【题目点拨】本题考查了过圆上的点的求圆的切线方程,属于容易题.14、##0.5【解题分析】根据题意,用表示出与,求出λ、μ的值即可【题目详解】设,则=(1﹣k)+k=,∴故答案为:15、【解题分析】将题意等价于的值域包含,讨论和结合化简即可.【题目详解】解:要使函数的值域为则的值域包含①当即时,值域为包含,故符合条件②当时综上,实数的取值范围是故答案为:【题目点拨】一元二次不等式常考题型:(1)一元二次不等式在上恒成立问题:解决此类问题常利用一元二次不等式在上恒成立的条件,注意如果不等式恒成立,不要忽略时的情况.(2)在给定区间上的恒成立问题求解方法:若在集合中恒成立,即集合是不等式的解集的子集,可以先求解集,再由子集的含义求解参数的值(或范围).16、【解题分析】根据题意得,进而根据扇形面积公式计算即可得答案.【题目详解】解:根据题意,只需计算图中阴影部分的面积,设,因为弧田的弧长为,弧所在的圆的半径为4,所以,所以阴影部分的面积为所以弧田的面积是.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】(1)由题意利用任意角的三角函数的定义,求得sinα,cosα的值(2)由条件利用诱导公式,求得的值【题目详解】解:(1)∵角α的顶点在坐标原点,始边与x轴的非负半轴重合,终边经过点P(﹣3,4),故,.(2)由(1)得.【题目点拨】本题主要考查任意角的三角函数的定义,诱导公式的应用,属于基础题18、(1)(2)【解题分析】(1)根据分数指数幂的运算法则计算可得;(2)根据对数的运算法则及对数恒等式计算可得;【小问1详解】解:【小问2详解】解:19、(1);(2).【解题分析】(1)由圆的一般方程所满足的条件列出不等式,解之即可;(2)将转化为,即,然后直线与圆联立,结合韦达定理列出关于的方程,解方程即可.【题目详解】(1)由,得.(2)设,,由得,即.将直线方程与曲线:联立并消去得,由韦达定理得①,②,又由得;∴.将①、②代入得,满足判别式大于0.20、(1);(2),【解题分析】(1)利用已知条件和,可以求出函数的周期,利用是对称轴和,可以求解出的值,从而完成解析式的求解;(2)先写出函数经过平移以

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论