江苏省苏州市常熟市2020-2021学年高二下学期期中考试数学试卷_第1页
江苏省苏州市常熟市2020-2021学年高二下学期期中考试数学试卷_第2页
江苏省苏州市常熟市2020-2021学年高二下学期期中考试数学试卷_第3页
江苏省苏州市常熟市2020-2021学年高二下学期期中考试数学试卷_第4页
江苏省苏州市常熟市2020-2021学年高二下学期期中考试数学试卷_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

20202021学年江苏省苏州市常熟市高二(下)期中数学试卷一、单项选择题(共8小题).1.命题甲:对任意x∈(a,b),有f′(x)>0;命题乙:f(x)在(a,b)内是单调递增的,则甲是乙的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件2.将4封不同的信投入3个不同的信箱,不同的投法种数为()A. B. C.34 D.433.函数在区间上的最大值是()A. B. C. D.4.若(1+x)3(1﹣2x)4=a0+a1x+a2x2+…+a7x7,则a0+a2+a4+a6=()A.8 B.6 C.5 D.45.如图,用4种不同的颜色对图中5个区域涂色(4种颜色全部使用),要求每个区域涂一种颜色,相邻的区域不能涂相同的颜色,则不同的涂色种数有()A.72种 B.96种 C.108种 D.120种6.设a∈Z,且0≤a≤13,若512021+a能被13整除,则a=()A.0 B.1 C.11 D.127.函数f(x)=x2﹣xsinx的图象大致为()A. B. C. D.8.已知定义在R上的连续奇函数f(x)的导函数为f′(x),已知f(1)≠0,且当x>0时,有xlnx•f′(x)<﹣f(x)成立,则使(x2﹣4)f(x)>0成立的x的取值范围是()A.(﹣2,0)∪(0,2) B.(﹣∞,﹣2)∪(0,2) C.(﹣2,0)∪(2,+∞) D.(﹣∞,﹣2)∪(2,+∞)二、多选题(每小题5分).9.若直线是函数f(x)图象的一条切线,则函数f(x)可以是()A. B.f(x)=x4 C.f(x)=sinx D.f(x)=ex10.下列等式正确的是()A.C=C B.A﹣A=n2A C.A=nA D.nC=C+kC11.已知(+3x2)n展开式中,各项系数的和比它的二项式系数的和大992,则下列结论正确的为()A.展开式中偶数项的二项式系数之和为25 B.展开式中二项式系数最大的项只有第三项 C.展开式中系数最大的项只有第五项 D.展开式中有理项为第三项、第六项12.已知函数f(x)=xcosx﹣sinx,下列结论中正确的是()A.函数f(x)在时,取得极小值﹣1 B.对于∀x∈[0,π],f(x)≤0恒成立 C.若0<x1<x2<π,则 D.若,对于恒成立,则a的最大值为,b的最小值为1三、填空题(每小题5分).13.(﹣3)7的展开式中x3的系数为.14.已知a为实数,若函数f(x)=x3﹣3ax2+2a2的极小值为0,则a的值为.15.已知函数f(x)=ax2﹣2x+lnx有两个不同的极值点x1,x2,则实数a的取值范围为.16.有8个座位连成一排,甲、乙、丙、丁4人就坐,要求有且仅有两个空位相邻且甲、乙两人都在丙的同侧,则共有种不同的坐法.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知函数f(x)=lnx﹣x2+3.(1)求函数f(x)的单调区间;(2)求函数f(x)在区间[,e]上的最大值和最小值.18.用0,1,2,3,4这五个数字组成无重复数字的自然数.(1)在组成的五位数中,所有奇数的个数有多少?(2)在组成的五位数中,数字1和3相邻的个数有多少?(3)在组成的五位数中,若从小到大排列,30124排第几个?19.将4个编号为1,2,3,4的不同小球全部放入4个编号为1,2,3,4的4个不同盒子中.求:(Ⅰ)每个盒至少一个球,有多少种不同的放法?(Ⅱ)恰好有一个空盒,有多少种不同的放法?(Ⅲ)每盒放一个球,并且恰好有一个球的编号与盒子的编号相同,有多少种不同的放法?(Ⅳ)把已知中4个不同的小球换成四个完全相同的小球(无编号),其余条件不变,恰有一个空盒,有多少种不同的放法?20.已知在(﹣)n的展开式中,第5项的系数与第3项的系数之比是56:3.(1)求展开式中的所有有理项;(2)求展开式中系数绝对值最大的项.(3)求n+++…+9n﹣1的值.21.已知函数f(x)=lnx++a.(1)当a=﹣时,求函数f(x)在(2,f(2))处的切线方程;(2)当a∈(0,ln2),证明:函数g(x)=exf(x)存在唯一极值点x0,且g(x0)>0.22.已知函数f(x)=xlnx﹣aex+a,其中a∈R.(1)若f(x)在定义域内是单调函数,求a的取值范围;(2)当a=1时,求证:对任意x∈(0,+∞),恒有f(x)<cosx成立.参考答案一、单项选择题(每小题5分).1.命题甲:对任意x∈(a,b),有f′(x)>0;命题乙:f(x)在(a,b)内是单调递增的,则甲是乙的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件解:对任意x∈(a,b),有f′(x)>0,则f(x)在(a,b)内是单调递增的,则甲是乙的充分条件,f(x)在(a,b)内是单调递增的,则对任意x∈(a,b),有f′(x)≥0,则甲是乙的不必要条件,故甲是乙的充分不必要条件,故选:A.2.将4封不同的信投入3个不同的信箱,不同的投法种数为()A. B. C.34 D.43解:每封信都有3种不同的投法由分步计数原理可得,4封信共有3×3×3×3=34.故选:C.3.函数在区间上的最大值是()A. B. C. D.解:函数f(x)=,x∈,f′(x)=1﹣2sinx,令f′(x)=0,解得x=.∴函数f(x)在内单调递增,在内单调递减.∴x=时函数f(x)取得极大值即最大值.=﹣=.故选:B.4.若(1+x)3(1﹣2x)4=a0+a1x+a2x2+…+a7x7,则a0+a2+a4+a6=()A.8 B.6 C.5 D.4解:∵(1+x)3(1﹣2x)4=a0+a1x+a2x2+…+a7x7,令x=1,可得a0+a1+a2+…+a7=8①,再令x=﹣1,可得a0﹣a1+a2+…﹣a7=0②,则①+②,并除以2,可得a0+a2+a4+a6=4,故选:D.5.如图,用4种不同的颜色对图中5个区域涂色(4种颜色全部使用),要求每个区域涂一种颜色,相邻的区域不能涂相同的颜色,则不同的涂色种数有()A.72种 B.96种 C.108种 D.120种解:由题意知本题是一个分步计数问题,第一步:涂区域1,有4种方法;第二步:涂区域2,有3种方法;第三步:涂区域4,有2种方法(此前三步已经用去三种颜色);第四步:涂区域3,分两类:第一类,3与1同色,则区域5涂第四种颜色;第二类,区域3与1不同色,则涂第四种颜色,此时区域5就可以涂区域1或区域2或区域3中的任意一种颜色,有3种方法.所以,不同的涂色种数有4×3×2×(1×1+1×3)=96种.故选:B.6.设a∈Z,且0≤a≤13,若512021+a能被13整除,则a=()A.0 B.1 C.11 D.12解:∵a∈Z,且0≤a≤13,若512021+a=(52﹣1)2021+a=×522021﹣×522020+522016+…+×52﹣+a能被13整除,∴﹣+a=﹣1+a能被13整除,则a=1,故选:B.7.函数f(x)=x2﹣xsinx的图象大致为()A. B. C. D.解:∵f(﹣x)=(﹣x)2﹣(﹣x)sin(﹣x)=x2﹣xsinx=f(x),且定义域为R,∴f(x)为偶函数,故排除选项D;f(x)=x(x﹣sinx),设g(x)=x﹣sinx,则g′(x)=1﹣cosx≥0恒成立,∴g(x)单调递增,∴当x>0时,g(x)>g(0)=0,∴当x>0时,f(x)=xg(x)>0,且f(x)单调递增,故排除选项A、B;故选:C.8.已知定义在R上的连续奇函数f(x)的导函数为f′(x),已知f(1)≠0,且当x>0时,有xlnx•f′(x)<﹣f(x)成立,则使(x2﹣4)f(x)>0成立的x的取值范围是()A.(﹣2,0)∪(0,2) B.(﹣∞,﹣2)∪(0,2) C.(﹣2,0)∪(2,+∞) D.(﹣∞,﹣2)∪(2,+∞)解:令g(x)=f(x)•lnx(x>0),所以g′(x)=f′(x)lnx+,当x>0时,有xlnx•f′(x)+f(x)<0,得f′(x)lnx+<0,则g′(x)<0,故g(x)在(0,+∞)上单调递减,且g(1)=0m当x>1时,f(x)lnx<0,得f(x)<0,当0<x<1时,f(x)lnx>0,得f(x)<0,因为f(x)为连续函数,且f(1)≠0,所以f(x)<0在(0,+∞)上恒成立,又f(x)为定义在R上的奇函数,所以当x<0时,f(x)>0,不等式(x2﹣4)f(x)>0,即或,解得x<﹣2或0<x<2,则x的取值范围为(﹣∞,﹣2)∪(0,2),故选:B.二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分.9.若直线是函数f(x)图象的一条切线,则函数f(x)可以是()A. B.f(x)=x4 C.f(x)=sinx D.f(x)=ex解:直线的斜率为k=,由f(x)=的导数为f′(x)=﹣,即有切线的斜率小于0,故A不能选;由f(x)=x4的导数为f′(x)=4x3,而4x3=,解得x=,故B可以选;由f(x)=sinx的导数为f′(x)=cosx,而cosx=有解,故C可以选;由f(x)=ex的导数为f′(x)=ex,而ex=,解得x=﹣ln2,故D可以选.故选:BCD.10.下列等式正确的是()A.C=C B.A﹣A=n2A C.A=nA D.nC=C+kC解:∵=,而=•=,故A错误;∵﹣=(n+1)n(n﹣1)•••(n﹣m+1)﹣n(n﹣1)•••(n﹣m+1)=n(n﹣1)•••(n﹣m+1)[n+1﹣1]=n2(n﹣1)(n﹣2)•••(n﹣m+1),n2=n2(n﹣1)(n﹣2)•••(n﹣m+1),故B正确;∵=n(n﹣1)•••(n﹣m+1),n=n•(n﹣1)(n﹣2)•••(n﹣m+1),故C正确;n=n,+k=+k=+=,故D错误,故选:BC.11.已知(+3x2)n展开式中,各项系数的和比它的二项式系数的和大992,则下列结论正确的为()A.展开式中偶数项的二项式系数之和为25 B.展开式中二项式系数最大的项只有第三项 C.展开式中系数最大的项只有第五项 D.展开式中有理项为第三项、第六项解:∵(+3x2)n展开式中,各项系数的和比它的二项式系数的和大992,∴4n﹣2n=992,求得2n=32,∴n=5,故展开式中偶数项的二项式系数之和为=24,故A错误.二项展开式的通项公式为Tr+1=•3r•,展开式中,故当r=2或3时,即第三项、第四项的二项式系数最大,故B错误.故当r=4时,展开式中第r+1项的系数•3r最大,即第五项得系数最大.由于(+3x2)n展开式的通项公式为Tr+1=•3r•,故C正确.故当r=2或5时,展开式中为理项,即第三项、第六项为有理项,故D正确.故选:CD.12.已知函数f(x)=xcosx﹣sinx,下列结论中正确的是()A.函数f(x)在时,取得极小值﹣1 B.对于∀x∈[0,π],f(x)≤0恒成立 C.若0<x1<x2<π,则 D.若,对于恒成立,则a的最大值为,b的最小值为1解:因为f′(x)=cosx﹣xsinx﹣cosx=﹣xsinx,当x∈[0,π]时,f′(x)≤0,f(x)单调递减,所以函数f(x)在x=处,不是极值点,故A错误.所以对于∀x∈[0,π],f(x)≤f(0)=0,故B正确,令g(x)=,g′(x)=,由上可知,当x∈(0,π)时,g′(x)≤0,所以g(x)在(0,π)上是减函数,若0<x1<x2<π所以,即,故C正确,当x>0时,“”等价于“sinx﹣ax>0”,令g(x)=sinx﹣cx,g′(x)=cosx﹣c,当c≤0时,g(x)>0对x∈(0,)恒成立,当c≥1时,因为对∀∈(0,),g′(x)=cosx﹣c<0,所以g(x)在区间(0,)上单调递减,从而,g(x)<g(0)=0,对∀x∈(0,)恒成立,当0<c<1时,存在唯一的x0∈(0,)使得g(x0)=cosx0﹣c=0成立,若x∈(0,x0),g′(x0)>0,g(x)在(0,x0)上单调递增,且g(x)>g(0)=0,若x∈(x0,),g′(x0)<0,g(x)在(x0,)上单调递减,且g(x)=sinx﹣cx>0,在(x0,)上恒成立,必须使g()=sin﹣c=1﹣≥0恒成立,即0<c≤,综上所述,当c≤时,g(x)>0,对任意x∈(0,)恒成立,当c≥1时,g(x)<0,对任意x∈(0,)恒成立,所以若a<<b,对x∈(0,)恒成立,则a的最大值为,b的最小值为1,所以D正确.故选:BCD.三、填空题:本题共4小题,每小题5分,共计20分.13.(﹣3)7的展开式中x3的系数为﹣21.解:(﹣3)7的展开式的通项.由,得r=1.∴(﹣3)7的展开式中x3的系数为.故答案为:﹣21.14.已知a为实数,若函数f(x)=x3﹣3ax2+2a2的极小值为0,则a的值为.解:由已知f′(x)=3x2﹣6ax=3x(x﹣2a),又a>0,所以由f′(x)>0得x<0或x>2a,由f′(x)<0得0<x<2a,所以f(x)在x=2a处取得极小值0,即f(x)极小值=f(2a)=(2a)3﹣3a(2a)2+2a2=﹣4a3+2a2=0,又a>0,解得a=,故答案为:.15.已知函数f(x)=ax2﹣2x+lnx有两个不同的极值点x1,x2,则实数a的取值范围为(0,).解:f(x)的定义域为(0,+∞),f′(x)=2ax﹣2+=,∵f(x)有两个不同的极值点x1,x2,∴f′(x)=0有两个不相等的正实数根,即2ax2﹣2x+1=0两个不相等的正实数根x1,x2,∴,解得:0<a<,故答案为:(0,).16.有8个座位连成一排,甲、乙、丙、丁4人就坐,要求有且仅有两个空位相邻且甲、乙两人都在丙的同侧,则共有480种不同的坐法.解:根据题意,分3步进行分析:①将甲乙两人安排在丙的同侧,有2A22=4种安排方法,②将丁安排在三人的空位中,有4种安排方法,③将两个空位看成一个整体,和剩下的2个空位安排到4人形成的5个空位中,有5C42=30种安排方法,则有4×4×30=480种安排方法,故答案为:480.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知函数f(x)=lnx﹣x2+3.(1)求函数f(x)的单调区间;(2)求函数f(x)在区间[,e]上的最大值和最小值.解:(1)∵f(x)=lnx﹣x2+3,定义域为(0,+∞),∴f'(x)=﹣x=,令f'(x)>0,则0<x<1,∴函数f(x)的单调递增区间为(0,1);令f'(x)<0,则x>1,∴函数f(x)的单调递减区间为(1,+∞).(2)f(x),f'(x)在区间[,e]上随x的变化情况如下表:x(,1)1(1,e)ef'(x)+0﹣f(x)2﹣↑极大值↓4﹣e2∴f(x)max=,f(x)min=4﹣e2.18.用0,1,2,3,4这五个数字组成无重复数字的自然数.(1)在组成的五位数中,所有奇数的个数有多少?(2)在组成的五位数中,数字1和3相邻的个数有多少?(3)在组成的五位数中,若从小到大排列,30124排第几个?解:(1)依题意,所有奇数的个数为=36个;(2)数字1和3相邻的个数有=36个;(3)比30124小的数的个数为:=48个,所以在组成的五位数中,若从小到大排列,30124排第49个.19.将4个编号为1,2,3,4的不同小球全部放入4个编号为1,2,3,4的4个不同盒子中.求:(Ⅰ)每个盒至少一个球,有多少种不同的放法?(Ⅱ)恰好有一个空盒,有多少种不同的放法?(Ⅲ)每盒放一个球,并且恰好有一个球的编号与盒子的编号相同,有多少种不同的放法?(Ⅳ)把已知中4个不同的小球换成四个完全相同的小球(无编号),其余条件不变,恰有一个空盒,有多少种不同的放法?解:(Ⅰ)每个盒至少一个球即每个盒子均有一球,也就是4个元素的排列,故有A44=24种不同的放法;(Ⅱ)恰有一个空盒,说明恰有一个盒子中有2个小球,从4个小球中选两个作为一个元素,同另外两个元素在三个位置全排列,故共有C42A43=144种不同的放法;(Ⅲ)先选出1个小球,放到对应序号的盒子里,有C41=4种情况,其它小球的放法只有2种,例如:4号球放在4号盒子里,其余3个球的放法为,(2,3,1),(3,1,2),共2种,故每盒放一个球,并且恰好有一个球的编号与盒子的编号相同,有2C41=8种;(Ⅳ)分2步进行分析,从4个盒子中选出一个盒子当作空盒,C41=4种选法,再将其余3个盒子装球,由题意,3个盒子分别装2,1,1个球,只要选一个盒子装2个球,另外的2个盒子一定是每个装一个球,有C31=3种选法,所以,总方法数为3×4=12种.20.已知在(﹣)n的展开式中,第5项的系数与第3项的系数之比是56:3.(1)求展开式中的所有有理项;(2)求展开式中系数绝对值最大的项.(3)求n+++…+9n﹣1的值.解:(1)由第5项的系数与第3项的系数之比是:=56:3,解得n=10.因为通项:Tr+1=•(﹣2)r•,当5﹣为整数,r可取0,6,于是有理项为T1=x5和T7=13440.(2)设第r+1项系数绝对值最大,则.解得,于是r只能为7.所以系数绝对值最大的项为T8=﹣15360.(3)n+++…+9n﹣1=10+9+92•+…+910﹣1•===.21.已知函数f(x)=lnx++a.(1)当a=﹣时,求函数f(x)在(2,f(2))处的切线方程;(2)当a∈(0,ln2),证明:函数g(x)=exf(x)存在唯一极值点x0,且g(x0)>0.解:(1)当a=﹣时,f(x)=lnx+﹣.f′(x)=﹣=,∴f′(2)=,f(2)=ln2,∴函数f(x)在(2,f(2))处的切线方程为:y﹣ln2=(x﹣2),整理为:x﹣4y+4ln2﹣2=0.(2)证明:函数g(x)=exf(x)=ex(lnx++a),x∈(0,+∞).g′(x)=ex(lnx+﹣+a),设h(x)=lnx+﹣+a,∵∀x∈R,ex>0,因此g′(x)与h(x)的符号相同.h′(x)=﹣+=,显然,当x>0时,h′(x)>0,函数h(x)单调递增.又h(1)=0+2﹣1+a=1+a>0,h()=ln+4﹣4+a=a﹣ln2<0.(a∈(0,ln2)),∴存在唯一x0∈(,1),使得h(x0)=0.对于g(x),则有x∈(0,x0)时,g′(x)<0;x∈

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论