版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年四川省内江市龙会中学高二数学文月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.如图是成品加工流程图,从图中可以看出,即使是一件不合格产品,也必须经过多少道工序()A.6 B.5或7 C.5 D.5或6或7参考答案:B【考点】EH:绘制简单实际问题的流程图.【分析】根据工序流程图,写出一件不合格产品的工序流程即可.【解答】解:由某产品加工为成品的流程图看出,即使是一件不合格产品,“零件到达后经过粗加工、检验、返修加工、检验、定为废品”五道程序;或是“零件到达后经过粗加工、检验、粗加工、检验、定为废品”五道程序;或是“零件到达后经过粗加工、检验、返修加工、检验、粗加工、检验、定为废品”七道程序.所以,由工序流程图知须经过5或7道工序.故选:B.【点评】本题考查工序流程图的应用问题,解题时应认真审题,做到不漏不重,是基础题.2.用数学归纳法证明等式1+2+3+…+(n+3)=时,第一步验证n=1时,左边应取的项是()A.1 B.1+2 C.1+2+3 D.1+2+3+4参考答案:D【考点】RG:数学归纳法.【分析】由等式,当n=1时,n+3=4,而等式左边起始为1的连续的正整数的和,由此易得答案.【解答】解:在等式中,当n=1时,n+3=4,而等式左边起始为1的连续的正整数的和,故n=1时,等式左边的项为:1+2+3+4故选D.3.已知,那么下列不等式成立的是()
A、
B、
C、
D、参考答案:D略4.过原点的直线与函数的图象交于A,B两点,过B作轴的垂线交函数的图象于点C,若直线AC平行于轴,则点A的坐标是A.
B.
C.
D.参考答案:B5.已知F1,F2是双曲线的左,右焦点,点P在双曲线上且不与顶点重合,过F2作∠F1PF2的角平分线的垂线,垂足为A.若,则该双曲线的离心率为()A. B.1+ C.2 D.2+参考答案:A【考点】双曲线的简单性质.【分析】由题意可知:丨PQ丨=丨PF2丨,则丨丨PF1丨﹣丨PF2丨丨=2a,丨PF1丨﹣丨PQ丨=丨QF1丨=2a,由OA是△F2F1Q的中位线,丨QF1丨=2a=2丨OA丨=b,a=,c=a,双曲线的离心率e==.【解答】解:∵F1,F2是双曲线的左右焦点,延长F2A交PF1于Q,∵PA是∠F1PF2的角平分线,∴丨PQ丨=丨PF2丨,∵P在双曲线上,则丨丨PF1丨﹣丨PF2丨丨=2a,∴丨PF1丨﹣丨PQ丨=丨QF1丨=2a,∵O是F1F2中点,A是F2Q中点,∴OA是△F2F1Q的中位线,∴丨QF1丨=2a=2丨OA丨=b,∴a=,c==a,∴双曲线的离心率e==.故选A.6.若则向量的关系是(
)A.平行
B.重合
C.垂直
D.不确定参考答案:C7.在△ABC中,已知,角C的平分线CD把△ABC面积分为5:3两部分,则cosA等于()A.
B.
C.
D.参考答案:A8.如果的展开式中各项系数之和为128,则展开式中的系数是(
)A.-2835
B.2835
C.21
D.-21参考答案:A9.已知是第二象限角,且sin(,则tan2的值为(
)A.
B.
C.
D.参考答案:C10.抛物线的焦点坐标是
A.(2,0)
B.(-2,0)
C.(4,0)
D.(-4,0)参考答案:B略二、填空题:本大题共7小题,每小题4分,共28分11.在三角形ABC中,已知AB=4,AC=3,BC=6,P为BC中点,则三角形ABP的周长为
.参考答案:7+【考点】余弦定理;正弦定理.【专题】解三角形.【分析】如图所示,设∠APB=α,∠APC=π﹣α.在△ABP与△APC中,由余弦定理可得:AB2=AP2+BP2﹣2AP?BPcosα,AC2=AP2+PC2﹣2AP?PCcos(π﹣α),可得AB2+AC2=2AP2+,代入即可得出.【解答】解:如图所示,设∠APB=α,∠APC=π﹣α.在△ABP与△APC中,由余弦定理可得:AB2=AP2+BP2﹣2AP?BPcosα,AC2=AP2+PC2﹣2AP?PCcos(π﹣α),∴AB2+AC2=2AP2+,∴42+32=2AP2+,解得AP=.∴三角形ABP的周长=7+.故答案为:7+.【点评】本题考查了余弦定理的应用、中线长定理,考查了推理能力与计算能力,属于中档题.12.在△ABC中,∠A=,AC=3,面积为,那么BC的长为
.参考答案:13.用秦九韶算法计算多项式
当时的值为_________。参考答案:014.△的三个顶点坐标为,则边上高线的长为______。参考答案:15.抛物线x2=y上一点到直线2x﹣y﹣4=0的距离最短的点的坐标是.参考答案:(1,1)【考点】抛物线的简单性质.【分析】设抛物线y=x2上一点为A(x0,x02),求出点A(x0,x02)到直线2x﹣y﹣4=0的距离,利用配方法,由此能求出抛物线y=x2上一点到直线2x﹣y﹣4=0的距离最短的点的坐标.【解答】解:设抛物线y=x2上一点为A(x0,x02),点A(x0,x02)到直线2x﹣y﹣4=0的距离d==|(x0﹣1)2+3|,∴当x0=1时,即当A(1,1)时,抛物线y=x2上一点到直线2x﹣y﹣4=0的距离最短.故答案为:(1,1).16.从0,1,2,3,4,5六个数字中每次取3个不同的数字,可以组成
个无重复数字的3位偶数;参考答案:52略17.已知圆的方程,则实数的取值范围是
.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知圆C经过点A(1,1)和B(4,﹣2),且圆心C在直线l:x+y+1=0上.(Ⅰ)求圆C的标准方程;(Ⅱ)设M,N为圆C上两点,且M,N关于直线l对称,若以MN为直径的圆经过原点O,求直线MN的方程.参考答案:【考点】直线和圆的方程的应用.【专题】方程思想;综合法;直线与圆.【分析】(Ⅰ)根据题意,分析可得圆C的圆心是线段AB的垂直平分线与直线l的交点,先求出线段AB的垂直平分线的方程,与直线l联立可得圆心C的坐标,进而可得圆的半径,即可得答案;(Ⅱ)设以MN为直径的圆的圆心为P,半径为r,可以设p的坐标为(m,﹣1﹣m),结合直线与圆的位置关系可得(m﹣1)2+(m﹣1)2+m2+(m+1)2=9,解得m的值,即可得p的坐标,分析可得直线MN的斜率为1,由直线的点斜式方程可得答案.【解答】解:(Ⅰ)∵A(1,1),B(4,﹣2)∴直线AB的斜率…∴直线AB的垂直平分线的斜率为1…又线段AB的中点坐标为∴线段AB的垂直平分线的方程是,即x﹣y﹣3=0…∵圆心C在直线l:x+y+1=0上∴圆心C的坐标是方程组的解,得圆心C的坐标(1,﹣2)…∴圆C的半径长…∴圆C的标准方程是(x﹣1)2+(y+2)2=9…(Ⅱ)设以MN为直径的圆的圆心为P,半径为r∵M,N是圆C上的两点,且M,N关于直线l:x+y+1=0对称∴点P在直线l:x+y+1=0上∴可以设点P坐标为(m,﹣1﹣m)…∵以MN为直径的圆经过原点O∴以MN为直径的圆的半径长…∵MN是圆C的弦,∴|CP|2+r2=9,即(m﹣1)2+(m﹣1)2+m2+(m+1)2=9,解得m=﹣1或∴点P坐标为(﹣1,0)或…∵直线MN垂直直线l:x+y+1=0,∴直线MN的斜率为1…∴直线MN的方程为:x﹣y+1=0或x﹣y﹣4=0…【点评】本题考查直线与圆的方程的综合运用,涉及直线与圆的位置关系,解题的关键求出圆的标准方程.19.设函数f(x)=2cos2x+sin2x+a(a∈R).(1)求函数f(x)的最小正周期;(2)当x∈[0,]时,f(x)的最大值为2,求a的值。参考答案:略20.(本题满分12分)计算下列各题(Ⅰ)已知函数,求;(Ⅱ)求.(Ⅲ)已知为的共轭复数,且,求参考答案:(Ⅰ)(Ⅱ)原式(Ⅲ)21.(本小题满分12分)已知函数与函数在点处有公共的切线,.(1)求的值(2)求在区间上的最小值.参考答案:(1)因为所以在函数的图象上又,所以所以
(2)因为,其定义域为
当时,,所以在上单调递增所以在上最小值为
当时,令,得到(舍)当时,即时,对恒成立,所以在上单调递增,其最小值为
当时,即时,对成立,所以在上单调递减,其最小值为
当,即时,对成立,对成立所以在单调递减,在上单调递增其最小值为综上,当时,
在上的最小值为
当时,在上的最小值为
当时,
在上的最小值为22.已知(1)求展开式中各项系数和;(2)二项
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 数字化时代下的客户分析与销售策略
- 现代办公技术与应用实践培训
- 数学图形在儿童智力开发中的作用
- 科学实验教学对小学生综合素质的培养策略
- 项目突发环境事件应急预案
- 二手车批发合作合同协议
- 个人向个人临时借款合同模板
- 上海市租赁合同模板及示例
- 不锈钢期货电子交易合同
- 个人房屋销售合同简易范本
- PTW-UNIDOS-E-放射剂量仪中文说明书
- 保险学(第五版)课件全套 魏华林 第0-18章 绪论、风险与保险- 保险市场监管、附章:社会保险
- 许小年:浅析日本失去的30年-兼评“资产负债表衰退”
- 典范英语2b课文电子书
- 17~18世纪意大利歌剧探析
- 微课制作技术与技巧要点
- β内酰胺类抗生素与合理用药
- 何以中国:公元前2000年的中原图景
- 第一章:公共政策理论模型
- GB/T 4513.7-2017不定形耐火材料第7部分:预制件的测定
- GB/T 10205-2009磷酸一铵、磷酸二铵
评论
0/150
提交评论