浙江省杭二中2023年数学高二第二学期期末质量检测试题含解析_第1页
浙江省杭二中2023年数学高二第二学期期末质量检测试题含解析_第2页
浙江省杭二中2023年数学高二第二学期期末质量检测试题含解析_第3页
浙江省杭二中2023年数学高二第二学期期末质量检测试题含解析_第4页
浙江省杭二中2023年数学高二第二学期期末质量检测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知数列是等比数列,若则的值为()A.4 B.4或-4 C.2 D.2或-22.在一项调查中有两个变量和,下图是由这两个变量近8年来的取值数据得到的散点图,那么适宜作为关于的回归方程的函数类型是()A. B.C. D.()3.执行如图所示的程序框图,若输入m=1,n=3,输出的x=1.75,则空白判断框内应填的条件为()A. B. C. D.4.已知复数,则下列结论正确的是A.的虚部为i B.C.为纯虚数 D.5.在极坐标系中,圆的圆心的极坐标为()A. B. C. D.6.两个变量的相关关系有正相关,负相关,不相关,则下列散点图从左到右分别反映的变量间的相关关系是A. B. C. D.7.已知函数,且,其中是的导函数,则()A. B. C. D.8.已知定义在上的函数在上单调递减,且是偶函数,不等式对任意的恒成立,则实数的取值范围是()A. B. C. D.9.一个均匀的正方体,把其中相对的面分别涂上红色、黄色、蓝色,随机向上抛出,正方体落地时“向上面为红色”的概率是A. B. C. D.10.等比数列的前n项和为,已知,则A. B. C. D.11.函数的最大值为()A. B. C. D.12.若满足,则的最大值为()A.8 B.7 C.2 D.1二、填空题:本题共4小题,每小题5分,共20分。13.在的展开式中,项的系数为______.14.在半径为1的球面上,若A,B两点的球面距离为,则线段AB的长|AB|=_____.15.设A=xx≤2019,x∈R16.不等式的解为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列()的通项公式为().(1)分别求的二项展开式中的二项式系数之和与系数之和;(2)求的二项展开式中的系数最大的项;(3)记(),求集合的元素个数(写出具体的表达式).18.(12分)已知函数.(1)画出函数的大致图象,并写出的值域;(2)若关于的不等式有解,求实数的取值范围.19.(12分)已知函数.(1)求函数的极值;(2)当时,证明:;(3)设函数的图象与直线的两个交点分别为,,的中点的横坐标为,证明:.20.(12分)设函数.(Ⅰ)讨论函数的单调性;(Ⅱ)当函数有最大值且最大值大于时,求的取值范围.21.(12分)已知函数.(1)当时,求函数的零点;(2)若不等式至少有一个负解,求实数的取值范围.22.(10分)设函数,其中.(Ⅰ)若,讨论的单调性;(Ⅱ)若,(i)证明恰有两个零点(ii)设为的极值点,为的零点,且,证明.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

设数列{an}的公比为q,由等比数列通项公式可得q4=16,由a3=a1q2,计算可得.【详解】因故选:A【点睛】本题考查等比数列的性质以及通项公式,属于简单题.2、B【解析】

根据散点图的趋势,选定正确的选项.【详解】散点图呈曲线,排除A选项,且增长速度变慢,排除选项C、D,故选B.【点睛】本小题主要考查散点图,考查回归直线方程等知识,属于基础题.3、B【解析】当第一次执行,返回,第二次执行,返回,第三次,,要输出x,故满足判断框,此时,故选B.点睛:本题主要考查含循环结构的框图问题.属于中档题.处理此类问题时,一般模拟程序的运行,经过几次运算即可跳出循环结束程序,注意每次循环后变量的变化情况,寻找规律即可顺利解决,对于运行次数比较多的循环结构,一般能够找到周期或规律,利用规律或周期确定和时跳出循环结构,得到问题的结果.4、C【解析】

先利用复数的除法将复数化为一般形式,然后利用复数的基本知识以及四则运算法则来判断各选项的正误.【详解】,的虚部为,,为纯虚数,,故选C.【点睛】本题考查复数的四则运算、复数的概念、共轭复数等的理解,解题的关键就是将复数化为一般形式,借助相关概念进行理解,考查计算能力,属于基础题.5、A【解析】由圆,化为,∴,化为,∴圆心为,半径r=.∵tanα=,取极角,∴圆的圆心的极坐标为.故选A.6、D【解析】

分别分析三个图中的点的分布情况,即可得出图是正相关关系,图不相关的,图是负相关关系.【详解】对于,图中的点成带状分布,且从左到右上升,是正相关关系;对于,图中的点没有明显的带状分布,是不相关的;对于,图中的点成带状分布,且从左到右是下降的,是负相关关系.故选:D.【点睛】本题考查了利散点图判断相关性问题,是基础题.7、A【解析】分析:求出原函数的导函数,然后由f′(x)=2f(x),求出sinx与cosx的关系,同时求出tanx的值,化简要求解的分式,最后把tanx的值代入即可.详解:因为函数f(x)=sinx-cosx,所以f′(x)=cosx+sinx,由f′(x)=2f(x),得:cosx+sinx=2sinx-2cosx,即3cosx=sinx,所以.所以=.故答案为A.点睛:(1)本题主要考查求导和三角函数化简求值,意在考查学生对这些知识的掌握水平和分析转化计算能力.(2)解答本题的关键是=.这里利用了“1”的变式,1=.8、A【解析】

根据是偶函数可以得出函数的对称轴,再根据函数在上单调递减可以得出函数在上的单调区间,从而解出不等式对任意的恒成立时的取值范围.【详解】是偶函数,所以得出函数的对称轴为,又因为函数在上单调递减,所以在上单调递增.因为,所以.因为不等式对任意的恒成立,所以.选择A【点睛】本题主要考查了函数的对称轴和奇偶性的综合问题,在解决此类题目时要搞清楚每一个条件能得出什么结论,把这些结论综合起来即得出结果.属于较难的题目.9、B【解析】

∵随机抛正方体,有6种等可能的结果,其中正方体落地时“向上面为红色”有2种情况,

∴正方体落地时“向上面为红色”的概率是

.故选B.10、A【解析】设公比为q,则,选A.11、B【解析】分析:直接利用柯西不等式求函数的最大值.详解:由柯西不等式得,所以(当且仅当即x=时取最大值)故答案为B.点睛:(1)本题主要考查柯西不等式求最值,意在考查学生对该知识的掌握水平和分析推理能力.(2)二元柯西不等式的代数形式:设均为实数,则,其中等号当且仅当时成立.12、B【解析】试题分析:作出题设约束条件可行域,如图内部(含边界),作直线,把直线向上平移,增加,当过点时,为最大值.故选B.考点:简单的线性规划问题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

利用二项式展开式的通项公式,求得项的系数.【详解】二项式,展开式中含项为,所以项的系数为.故答案为:.【点睛】本小题主要考查二项式展开式的通项公式,属于基础题.14、【解析】

根据球面距离的概念得弦所对的球心角,再根据余弦定理可求得结果.【详解】设球心为,根据球面距离的概念可得,在三角形中,由余弦定理可得,所以.故答案为:.【点睛】本题考查了球面距离的概念,考查了余弦定理,关键是根据球面距离求得球心角,属于基础题.15、 【解析】

首先解绝对值不等式求得集合A,根据偶次根式的条件求得集合B,之后求得两集合的交集,得到结果.【详解】解不等式x≤2019得A=[-2019,2019]根据x-2020≥02020-x≥0,解得B=2020,所以故答案是:ϕ.【点睛】该题考查的是有关集合的运算的问题,涉及到的知识点有绝对值不等式的解法,函数的定义域,两集合的交集的求解,属于简单题目.16、或或或【解析】

利用组合数公式得出关于的不等式,解出的取值范围,即可得出正整数的取值.【详解】,由组合数公式得,得,整理得,即,解得,由题意可知且,因此,不等式的解为或或或.故答案为:或或或.【点睛】本题考查组合不等式的求解,解题的关键就是利用组合数公式列出不等式,考查运算求解能力,属于中等题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),0;(2),;(3).【解析】

(1)根据二项展开式直接得二项式系数之和为,利用赋值法求二项展开式中的系数之和;(2)根据二项展开式通项公式得系数,再列方程组解得系数最大的项;(3)先根据二项式定理将展开成整数与小数,再根据奇偶性分类讨论元素个数,最后根据符号数列合并通项.【详解】(1)二项展开式中的二项式系数之和为,令得二项展开式中的系数之和为;(2)设二项展开式中的系数最大的项数为则因此二项展开式中的系数最大的项为,(3)所以当为偶数时,集合的元素个数为当为奇数时,集合的元素个数为综上,元素个数为【点睛】本题考查二项式系数之和、二项式展开式各项系数之和、二项式展开式中系数最大项以及利用二项式展开式计数,考查综合分析求解与应用能力,属较难题.18、(1)作图见解析;值域为(2)【解析】

(1)将转化为分段函数,即可画出函数图象;(2)根据(1)求得分段函数,可得分段函数表达式,画出其函数图象,求得,即可求得实数的取值范围.【详解】(1)∵,∴的图象的图像如图,的值域为.根据图象可得:的值域为.(2)由(1)得,画出其函数图象:根据其分段函数图象特征可得:,由关于的不等式有解等价于,即.【点睛】本题主要考查了求分段函数的值域和根据不等式有解求参数范围问题,解题关键是掌握通过函数图象求值域的方法和根据不等式有解求参数的解法,考查了分析能力和计算能力,属于中档题.19、(1)取得极大值,没有极小值(2)见解析(3)见解析【解析】

(1)利用导数求得函数的单调性,再根据极值的定义,即可求解函数的极值;(2)由,整理得整理得,设,利用导数求得函数的单调性与最值,即可求解.(3)不妨设,由(1)和由(2),得,利用单调性,即可作出证明.【详解】(1)由题意,函数,则,当时,,函数单调递增,当时,,函数单调递减,所以当时,取得极大值,没有极小值;(2)由得整理得,设,则,所以在上单调递增,所以,即,从而有.(3)证明:不妨设,由(1)知,则,由(2)知,由在上单调递减,所以,即,则,所以.【点睛】本题主要考查导数在函数中的综合应用,以及不等式的证明,着重考查了转化与化归思想、分类讨论、及逻辑推理能力与计算能力,对于恒成立问题,通常要构造新函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造新函数,直接把问题转化为函数的最值问题.20、(1)当时,函数在上单调递增,当时,函数在上单调递增,在上单调递减;(2).【解析】

(Ⅰ)函数的定义域为,①当时,,函数在上单调递增;②当时,令,解得,i)当时,,函数单调递增,ii)当时,,函数单调递减;综上所述:当时,函数在上单调递增,当时,函数在上单调递增,在上单调递减;(Ⅱ)由(Ⅰ)得:当函数有最大值且最大值大于,,即,令,且在上单调递增,在上恒成立,故的取值范围为.21、(1);(2)【解析】

(1)由,有,即,即可求得函数的零点;(2)不等式可化为,分别作出抛物线在轴上方的部分和抛物线在轴下方的部,结合图象求得两个临界位置,即可得到答案.【详解】(1)当时,函数,令,有,即,则,解得,即,故函数的零点为;(2)不等式可化为,如图所示,曲线段和分别是抛物线在轴上方的部分和抛物线在轴下方的部,因为不等式至少有一个负解,由图象可知,直线有两个临界位置,一个是与曲线段相切,另一个是通过曲线段和轴的交点,后者显然对应于;前者由可得到方程,由,解得,因此当时,不等式至少有一个负解,故实数的取值范围是.【点睛】本题主要考查了函数与方程的综合应用,以及利用函数的图象求解不等式的有解问题,其中解答中熟记函数零点的概念,以及合理利用函数的图象是解答的关键,着重考查了数形结合思想,以及推理与运算能力,属于中档试题.22、(I)在内单调递增.;(II)(i)见解析;(ii)见解析.【解析】

(I);首先写出函数的定义域,对函数求导,判断导数在对应区间上的符号,从而得到结果;(II)(i)对函数求导,确定函数的单调性,求得极值的符号,从而确定出函数的零点个数,得到结果;(ii)首先根据题意,列出方程组,借助于中介函数,证得结果.【详解】(I)解:由已知,的定义域为,且,因此当时,,从而

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论