版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知一个扇形的圆心角为,半径为1.则它的弧长为()A. B. C. D.2.已知两条直线m,n,两个平面α,β,给出下面四个命题:①m//n,m⊥α⇒n⊥α;②α//β,m⊂α,n⊂β⇒m//n;③m//n,m//α⇒n//α;④α//β,m//n,m⊥α⇒n⊥β其中正确命题的序号是()A.①④B.②④C.①③D.②③3.已知均为锐角,,则=A. B. C. D.4.以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=,|DE|=,则C的焦点到准线的距离为()A.2 B.4 C.6 D.85.若各项为正数的等差数列的前n项和为,且,则()A.9 B.14 C.7 D.186.我国魏晋时期的数学家刘徽,创立了用圆内接正多边形面积无限逼近圆面积的方法,称为“割圆术”,为圆周率的研究提供了科学的方法.在半径为1的圆内任取一点,则该点取自圆内接正十二边形外的概率为A. B.C. D.7.小金同学在学校中贯彻着“边玩边学”的学风,他在“汉诺塔”的游戏中发现了数列递推的奥妙:有、、三个木桩,木桩上套有编号分别为、、、、、、的七个圆环,规定每次只能将一个圆环从一个木桩移动到另一个木桩,且任意一个木桩上不能出现“编号较大的圆环在编号较小的圆环之上”的情况,现要将这七个圆环全部套到木桩上,则所需的最少次数为()A. B. C. D.8.阿波罗尼斯是古希腊著名的数学家,与欧几里得、阿基米德被称为亚历山大时期数学三巨匠,他对几何问题有深刻而系统的研究,阿波罗尼斯圆是他的研究成果之一,指出的是:已知动点M与两定点A,B的距离之比为,那么点M的轨迹是一个圆,称之为阿波罗尼斯圆.请解答下面问题:已知,,若直线上存在点M满足,则实数c的取值范围是()A. B. C. D.9.书架上有2本数学书和2本语文书,从这4本书中任取2本,那么互斥但不对立的两个事件是()A.“至少有1本数学书”和“都是语文书”B.“至少有1本数学书”和“至多有1本语文书”C.“恰有1本数学书”和“恰有2本数学书”D.“至多有1本数学书”和“都是语文书”10.已知直线与直线平行,则实数m的值为()A.3 B.1 C.-3或1 D.-1或3二、填空题:本大题共6小题,每小题5分,共30分。11.在中,已知M是AB边所在直线上一点,满足,则________.12.在中,角,,所对的边分别为,,,已知,,,则______.13.已知两个数k+9和6-k的等比中项是2k,则k=________.14.已知等差数列的公差为,且,其前项和为,若满足,,成等比数列,且,则______,______.15.已知,为第二象限角,则________16.已知数列的通项公式,则____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知为等差数列,前项和为,是首项为的等比数列,且公比大于,,,.(1)求和的通项公式;(2)求数列的前项和.18.已知函数,其中.(1)若函数在区间内有一个零点,求的取值范围;(2)若函数在区间上的最大值与最小值之差为2,且,求的取值范围.19.已知抛物线C:y2=2x,过点(2,0)的直线l交C于A,B两点,圆M是以线段AB为直径的圆.(1)证明:坐标原点O在圆M上;(2)设圆M过点,求直线l与圆M的方程.20.有n名学生,在一次数学测试后,老师将他们的分数(得分取正整数,满分为100分),按照,,,,的分组作出频率分布直方图(如图1),并作出样本分数的茎叶图(如图2)(图中仅列出了得分在,的数据).(1)求样本容量n和频率分布直方图中x、y的值;(2)分数在的学生中,男生有2人,现从该组抽取三人“座谈”,求至少有两名女生的概率.21.已知动点到定点的距离与到定点的距离之比为.(1)求动点的轨迹的方程;(2)过点作轨迹的切线,求该切线的方程.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
直接利用扇形弧长公式求解即可得到结果.【详解】由扇形弧长公式得:本题正确选项:【点睛】本题考查扇形弧长公式的应用,属于基础题.2、A【解析】依据线面垂直的判定定理可知命题①是正确的;对于命题②,直线m,n还有可能是异面,因此不正确;对于命题③,还有可能直线n⊂α,因此③命题不正确;依据线面垂直的判定定理可知命题④是正确的,故应选答案A.3、A【解析】因为,所以,又,所以,则;因为且,所以,又,所以;则====;故选A.点睛:三角函数式的化简要遵循“三看”原则(1)一看“角”,这是最重要的一环,通过看角之间的区别和联系,把角进行合理的拆分,从而正确使用公式;(2)而看“函数名称”看函数名称之间的差异,从而确定使用公式,常见的有“切化弦”;(3)三看“结构特征”,分析结构特征,可以帮助我们找到变形的方向,如“遇到分式通分”等.4、B【解析】
如图,设抛物线方程为,交轴于点,则,即点纵坐标为,则点横坐标为,即,由勾股定理知,,即,解得,即的焦点到准线的距离为4,故选B.【点睛】5、B【解析】
根据等差中项定义及条件式,先求得.再由等差数列的求和公式,即可求得的值.【详解】数列为各项是正数的等差数列则由等差中项可知所以原式可化为,所以由等差数列求和公式可得故选:B【点睛】本题考查了等差中项的性质,等差数列前n项和的性质及应用,属于基础题.6、D【解析】
由半径为1的圆内接正十二边形,可分割为12个顶角为,腰为1的等腰三角形,求得十二边形的面积,利用面积比的几何概型,即可求解.【详解】由题意,半径为1的圆内接正十二边形,可分割为12个顶角为,腰为1的等腰三角形,所以该正十二边形的面积为,由几何概型的概率计算公式,可得所求概率,故选D.【点睛】本题主要考查了几何概型的概率的计算问题,解决此类问题的步骤:求出满足条件A的基本事件对应的“几何度量”,再求出总的基本事件对应的“几何度量”,然后根据求解,着重考查了分析问题和解答问题的能力.7、B【解析】
假设桩上有个圆环,将个圆环从木桩全部套到木桩上,需要最少的次数为,根据题意求出数列的递推公式,利用递推公式求出数列的通项公式,从而得出的值,可得出结果.【详解】假设桩上有个圆环,将个圆环从木桩全部套到木桩上,需要最少的次数为,可这样操作,先将个圆环从木桩全部套到木桩上,至少需要的次数为,然后将最大的圆环从木桩套在木桩上,需要次,在将木桩上个圆环从木桩套到木桩上,至少需要的次数为,所以,,易知.设,得,对比得,,且,所以,数列是以为首项,以为公比的等比数列,,因此,,故选:B.【点睛】本题考查数列递推公式的应用,同时也考查了利用待定系数法求数列的通项,解题的关键就是利用题意得出数列的递推公式,考查推理能力与运算求解能力,属于中等题.8、B【解析】
根据题意设点M的坐标为,利用两点间的距离公式可得到关于的一元二次方程,只需即可求解.【详解】点M在直线上,不妨设点M的坐标为,由直线上存在点M满足,则,整理可得,,所以实数c的取值范围为.故选:B【点睛】本题考查了两点间的距离公式、一元二次不等式的解法,考查了学生分析问题解决问题的能力,属于中档题.9、C【解析】
两个事件互斥但不对立指的是这两个事件不能同时发生,也可以都不发生,逐一判断即可【详解】对于A:“至少有1本数学书”和“都是语文书”是对立事件,故不满足题意对于B:“至少有1本数学书”和“至多有1本语文书”可以同时发生,故不满足题意对于C:“恰有1本数学书”和“恰有2本数学书”互斥但不对立,满足题意对于D:“至多有1本数学书”和“都是语文书”可以同时发生,故不满足题意故选:C【点睛】本题考查互斥而不对立的两个事件的判断,考查互斥事件、对立事件的定义等基础知识,是基础题.10、B【解析】
两直线平行应该满足,利用系数关系及可解得m.【详解】两直线平行,可得(舍去).选B.【点睛】两直线平行的一般式对应关系为:,若是已知斜率,则有,截距不相等.二、填空题:本大题共6小题,每小题5分,共30分。11、3【解析】
由M在AB边所在直线上,则,又,然后将,都化为,即可解出答案.【详解】因为M在直线AB上,所以可设,
可得,即,又,则由与不共线,所以,解得.故答案为:3【点睛】本题考查向量的减法和向量共线的利用,属于基础题.12、30°【解析】
直接利用正弦定理得到或,再利用大角对大边排除一个答案.【详解】即或,故,故故答案为【点睛】本题考查了正弦定理,没有利用大角对大边排除一个答案是容易发生的错误.13、3【解析】由已知得(2k)2=(k+9)(6-k),k∈N*,∴k=3.14、2【解析】
由,可求出,再由,,成等比数列,可建立关系式,求出,进而求出即可.【详解】由,可知,即,又,,成等比数列,所以,则,即,解得或,因为,所以,,所以.故答案为:2;.【点睛】本题考查等比数列的性质,考查等差数列前项和的求法,考查学生的计算求解能力,属于基础题.15、【解析】
先求解,再求解,再利用降幂公式求解即可.【详解】由,又为第二象限角,故,且.又.故答案为:【点睛】本题主要考查了降幂公式的用法等,属于基础题型.16、【解析】
将代入即可求解【详解】令,可得.故答案为:【点睛】本题考查求数列的项,是基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),,;(2),.【解析】
(1)由等差数列和等比数列的基本量法求数列的通项公式;(2)用错位相减法求和.【详解】(1)数列公比为,则,∵,∴,∴,的公差为,首项是,则,,∴,解得.∴.(2),数列的前项和记为,,①,②①-②得:,∴.【点睛】本题考查等差数列和等比数列的通项公式,考查等差数列的前n项和及错位相减法求和.在求等差数列和等比数列的通项公式及前n项和公式时,基本量法是最基本也是最重要的方法,务必掌握,数列求和时除公式法外,有些特殊方法也需掌握:错位相减法,裂项相消法,分组(并项)求和法等等.18、(1);(2).【解析】
(1)解方程的根,则根在区间内,即可求出的范围即可;(2)根据函数的单调性求出最大,最小,作差得,从而得到关于的不等式,解出即可.【详解】(1)由,得,由得:,所以的范围是.(2)在递增,,,,,由,得,,解得:.【点睛】本题考查对数函数的性质、函数的单调性、最值等问题,考查转化与化归思想,求解过程中要会灵活运用换元法进行问题解决.19、(1)证明见解析;(2),或,.【解析】
(1)设,.由可得,则.又,故.因此的斜率与的斜率之积为,所以.故坐标原点在圆上.(2)由(1)可得.故圆心的坐标为,圆的半径.由于圆过点,因此,故,即,由(1)可得.所以,解得或.当时,直线的方程为,圆心的坐标为,圆的半径为,圆的方程为.当时,直线的方程为,圆心的坐标为,圆的半径为,圆的方程为.【名师点睛】直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;在解决直线与抛物线的位置关系时,要特别注意直线与抛物线的对称轴平行的特殊情况.中点弦问题,可以利用“点差法”,但不要忘记验证或说明中点在曲线内部.20、(1),,;(2)【解析】
(1)利用之间的人数和频率即可求出,进而可求出、;(2)列出所有基本事件,再找到符合要求的基本事件即可得解.【详解】(1)由题意可知,样本容量,,.(2)由题意知,分数在的学生共有5人,其中男生2人,女生3人,分别设编号为,和,,,则从该组抽取三人“座谈”包含的基本事件:,,,,,,,,,,共计10个.记事件A“至少有两名女生”,则事件A包含的基本事件有:,,,,,,,共计7个
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度篮球运动员个人荣誉奖励合同3篇
- 公益性岗位劳动合同协议书(2025年度)-社区健康促进3篇
- 2025年度新能源汽车合伙人股权分配与产业链整合合同3篇
- 2025年度农村宅基地房屋租赁与乡村旅游资源开发合同2篇
- 2025年农村自建房安全责任追究协议书
- 二零二五年度智能机器人研发项目采购合同风险管理与防范3篇
- 2025年度智能制造企业监事聘用合同规范文本3篇
- 二零二五石材品牌授权与市场营销合作合同3篇
- 二零二五年度日本语言学校入学合同2篇
- 二零二五年度公司与公司签订的智慧社区建设合作协议3篇
- 中心卫生院关于成立按病种分值付费(DIP)工作领导小组及制度的通知
- 医院感染监测清单
- Q∕SY 05592-2019 油气管道管体修复技术规范
- 《1.我又长大了一岁》教学课件∣泰山版
- JIS G3141-2021 冷轧钢板及钢带标准
- 篮球校本课程教材
- 小学数学校本教材(共51页)
- 遗传群体文献解读集
- 工艺装备环保性与安全性的设计要点
- [玻璃幕墙施工方案]隐框玻璃幕墙施工方案
- 国家开放大学电大本科《管理案例分析》2023-2024期末试题及答案(试卷代号:1304)
评论
0/150
提交评论