广东省梅县东山中学2022-2023学年高一数学第二学期期末学业质量监测试题含解析_第1页
广东省梅县东山中学2022-2023学年高一数学第二学期期末学业质量监测试题含解析_第2页
广东省梅县东山中学2022-2023学年高一数学第二学期期末学业质量监测试题含解析_第3页
广东省梅县东山中学2022-2023学年高一数学第二学期期末学业质量监测试题含解析_第4页
广东省梅县东山中学2022-2023学年高一数学第二学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.从装有4个红球和3个白球的袋中任取2个球,那么下列事件中,是对立事件的是()A.至少有1个白球;都是红球 B.至少有1个白球;至少有1个红球C.恰好有1个白球;恰好有2个白球 D.至少有1个白球;都是白球2.已知在三角形中,,点都在同一个球面上,此球面球心到平面的距离为,点是线段的中点,则点到平面的距离是()A. B. C. D.13.在等比数列中,,,则()A.140 B.120 C.100 D.804.过点P(0,2)作直线x+my﹣4=0的垂线,垂足为Q,则Q到直线x+2y﹣14=0的距离最小值为()A.0 B.2 C. D.25.如图,某几何体的三视图如图所示,则此几何体的体积为()A. B. C. D.36.截一个几何体,各个截面都是圆面,则这个几何体一定是()A.圆柱 B.圆锥 C.球 D.圆台7.已知圆与圆有3条公切线,则()A. B.或 C. D.或8.某工厂利用随机数表对生产的600个零件进行抽样测试,先将600个零件进行编号,编号分别为001,002,…,599,600从中抽取60个样本,如下提供随机数表的第4行到第6行:322118342978645407325242064438122343567735789056428442125331345786073625300732862345788907236896080432567808436789535577348994837522535578324577892345若从表中第6行第6列开始向右依次读取3个数据,则得到的第6个样本编号为()A.522 B.324 C.535 D.5789.如图,网格纸上小正方形的边长均为1,粗线画出的是某几何体的三视图,则该几何体的体积为()A.34 B.42 C.54 D.7210.若是的重心,,,分别是角的对边,若,则角()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.中,,,,则______.12.的内角的对边分别为,若,,,则的面积为__________.13.在中,,,是角,,所对应的边,,,如果,则________.14.数列的前项和为,,,则________.15.已知数列中,其中,,那么________16.设数列的前项和,若,,则的通项公式为_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知.(1)求函数的最小正周期和对称轴方程;(2)若,求的值域.18.在中,内角,,的对边分别为,已知.(1)求角的大小;(2)若,且,求的面积.19.在已知数列中,,.(1)若数列中,,求证:数列是等比数列;(2)设数列、的前项和分别为、,是否存在实数,使得数列为等差数列?若存在,试求出的值;若不存在,请说明理由.20.设是两个相互垂直的单位向量,且(Ⅰ)若,求的值;(Ⅱ)若,求的值.21.已知数列是等差数列,数列是等比数列,且,记数列的前项和为,数列的前项和为.(1)若,求序数的值;(2)若数列的公差,求数列的公比及.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

根据对立事件的定义判断.【详解】从装有4个红球和3个白球的袋内任取2个球,在A中,“至少有1个白球”与“都是红球”不能同时发生且必有一个事件会发生,是对立事件.在B中,“至少有1个白球”与“至少有1个红球”可以同时发生,不是互斥事件.在C中,“恰好有1个白球”与“恰好有2个白球”是互斥事件,但不是对立事件.在D中,“至少有1个白球”与“都是白球”不是互斥事件.故选:A.2、D【解析】

利用数形结合,计算球的半径,可得半径为2,进一步可得该几何体为正四面体,可得结果.【详解】如图据题意可知:点都在同一个球面上可知为的外心,故球心必在过且垂直平面的垂线上因为,所以球心到平面的距离为即,又所以同理可知:所以该几何体为正四面体,由点是线段的中点所以,且平面,故平面所以点到平面的距离是故选:D【点睛】本题考查空间几何体的应用,以及点到面的距离,本题难点在于得到该几何体为正四面体,属中档题.3、D【解析】

,计算出,然后将,得到答案.【详解】等比数列中,又因为,所以,所以,故选D项.【点睛】本题考查等比数列的基本量计算,属于简单题.4、C【解析】

由直线过定点,得到的中点,由垂直直线,得到点在以点为圆心,以为半径的圆,求得圆的方程,由此求出到直线的距离最小值,得到答案.【详解】由题意,过点作直线的垂线,垂足为,直线过定点,由中点公式可得,的中点,由垂直直线,所以点点在以点为圆心,以为半径的圆,其圆的方程为,则圆心到直线的距离为所以点到直线的距离最小值;,故选:C.【点睛】本题主要考查了圆的标准方程,直线与圆的位置关系的应用,同时涉及到点到直线的距离公式的应用,着重考查了推理与计算能力,以及分析问题和解答问题的能力,试题综合性强,属于中档试题.5、A【解析】

首先根据三视图画出几何体的直观图,进一步利用几何体的体积公式求出结果.【详解】解:根据几何体得三视图转换为几何体为:故:V.故选:A.【点睛】本题考查的知识要点:三视图和几何体之间的转换,几何体的体积公式的应用,主要考察学生的运算能力和转换能力,属于基础题.6、C【解析】

试题分析:圆柱截面可能是矩形;圆锥截面可能是三角形;圆台截面可能是梯形,该几何体显然是球,故选C.7、B【解析】

由两圆有3条公切线,可知两圆外切,则圆心距等于两圆半径之和,求解即可.【详解】由题意,圆与圆外切,所以,即,解得或.【点睛】本题考查了两圆外切的性质,考查了计算能力,属于基础题.8、D【解析】

根据随机抽样的定义进行判断即可.【详解】第行第列开始的数为(不合适),,(不合适),,,,(不合适),(不合适),,(重复不合适),则满足条件的6个编号为,,,,,则第6个编号为本题正确选项:【点睛】本题主要考查随机抽样的应用,根据定义选择满足条件的数据是解决本题的关键.9、C【解析】

还原几何体得四棱锥E﹣ABCD,由图中数据利用椎体的体积公式求解即可.【详解】依三视图知该几何体为四棱锥E﹣ABCD,如图,ABCD是直角梯形,是棱长为6的正方体的一部分,梯形的面积为:12几何体的体积为:13故选:C.【点睛】本题考查三视图求几何体的体积,由三视图正确还原几何体和补形是解题的关键,考查空间想象能力.10、D【解析】试题分析:由于是的重心,,,代入得,整理得,,因此,故答案为D.考点:1、平面向量基本定理;2、余弦定理的应用.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

根据,得到的值,再由余弦定理,得到的值.【详解】因为,所以,在中,,,由余弦定理得.所以.故答案为:【点睛】本题考查二倍角的余弦公式,余弦定理解三角形,属于简单题.12、【解析】

由已知及正弦定理可得:,进而利用余弦定理即可求得a的值,进而可求c,利用三角形的面积公式即可求解.【详解】,由正弦定理可得:,,由余弦定理,可得,整理可得:或(舍去),,,故答案为:.【点睛】本题注意考查余弦定理与正弦定理的应用,属于中档题.正弦定理主要有三种应用:求边和角、边角互化、外接圆半径.13、【解析】

首先利用同角三角函数的基本关系求出,再利用正弦定理即可求解.【详解】在中,,,即,,,即,,,,,即,,,即,,,由正弦定理得,,,故答案为:【点睛】本题考查了同角三角函数的基本关系以及正弦定理解三角形,需熟记公式,属于基础题.14、18【解析】

利用,化简得到数列是首项为,公比为的等比数列,利用,即可求解.【详解】,即所以数列是首项为,公比为的等比数列即所以故答案为:【点睛】本题主要考查了与的关系以及等比数列的通项公式,属于基础题.15、1【解析】

由已知数列递推式可得数列是以为首项,以为公比的等比数列,然后利用等比数列的通项公式求解.【详解】由,得,,则数列是以为首项,以为公比的等比数列,.故答案为:1.【点睛】本题考查数列的递推关系、等比数列通项公式,考查运算求解能力,特别是对复杂式子的理解.16、【解析】

已知求,通常分进行求解即可。【详解】时,,化为:.时,,解得.不满足上式.∴数列在时成等比数列.∴时,.∴.故答案为:.【点睛】本题主要考查了数列通项式的求法:求数列通项式常用的方法有累加法、定义法、配凑法、累乘法等。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)对称轴为,最小正周期;(2)【解析】

(1)利用正余弦的二倍角公式和辅助角公式将函数解析式进行化简得到,由周期公式和对称轴公式可得答案;(2)由x的范围得到,由正弦函数的性质即可得到值域.【详解】(1)令,则的对称轴为,最小正周期;(2)当时,,因为在单调递增,在单调递减,在取最大值,在取最小值,所以,所以.【点睛】本题考查正弦函数图像的性质,考查周期性,对称性,函数值域的求法,考查二倍角公式以及辅助角公式的应用,属于基础题.18、(1);(2).【解析】

(1)由二倍角公式得,求得则角可求;(2),得,由正弦定理得,再结合余弦定理得则面积可求【详解】(1)因为,所以,解得,因为,所以;(2)因为,所以,由正弦定理得所以,由余弦定理,,所以,所以.【点睛】本题考查二倍角公式,正余弦定理解三角形,准确计算是关键,是基础题19、(1)见解析;(2)存在,.【解析】

(1)利用等比数列的定义结合数列的递推公式证明出为非零常数,即可证明出数列为等比数列,并可求出数列的通项公式;(2)求出数列的通项公式,利用分组求和法与等比数列的求和公式分别求出数列、,设,列出关于、、的方程组,解出即可.【详解】(1)在数列中,,,则,,且,数列是以为首项,为公比的等比数列,;(2),整理得,,,,所以,,若数列为等差数列,可设,则,即,则,解得,因此,存在实数,使得数列为等差数列.【点睛】本题考查等差数列的证明、数列求和以及等差数列的存在性问题,熟悉等差数列的定义和通项公式的结构是解题的关键,考查推理能力与运算求解能力,属于中等题.20、(Ⅰ)(Ⅱ)【解析】

(Ⅰ),则存在唯一的使,解得所求参数的值;(Ⅱ)若,则,解得所求参数的值.【详解】解:(Ⅰ)若,则存在唯一的,使,,当时,;(Ⅱ)若,则,因为是两个相互垂直的单位向量,当时,.【点睛】本题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论