版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021年北京私立汇英学校高一数学理测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设若在方向上的投影为,且在方向上的投影为3,则和的夹角等于(
)A. B. C. D.参考答案:A2.已知函数在同一周期内,当时,取得最大值,当时,取得最小值,则函数的解析式为
(
)A.
B.
C.
D.参考答案:D3.若是任意的实数,且,则-------------------------------(
)A.
B.
C.
D.参考答案:D4.已知定义在R上的奇函数满足,,数列{an}是等差数列,若,,则A.-2
B.-3 C.2
D.3参考答案:B定义在R上的奇函数满足,故周期,数列是等差数列,若,,故,所以:,
5.已知圆的方程x2+y2=25,则过点P(3,4)的圆的切线方程为()A.3x﹣4y+7=0B.4x+3y﹣24=0C.3x+4y﹣25=0D.4x﹣3y=0参考答案:C6.若=(2,1),=(﹣1,3),则=()A.2 B.1 C.0 D.﹣1参考答案:B【考点】平面向量的坐标运算.【分析】利用平面向量的数量积公式求解.【解答】解:∵=(2,1),=(﹣1,3),∴=﹣2+3=1.故选:B.7.已知、、为三条不重合的直线,下面有三个结论:①若则∥;②若则;③若∥则.
其中正确的个数为(
)A.个
B.个
C.个
D.个参考答案:B8.正方体的内切球和外接球的半径之比为
()
A.
B.
C.
D.参考答案:D9.若直线与直线2x+3y﹣6=0的交点位于第一象限,则直线l的倾斜角的取值范围()A. B. C. D.参考答案:B【考点】直线的斜率;两条直线的交点坐标.【专题】计算题.【分析】联立两直线方程到底一个二元一次方程组,求出方程组的解集即可得到交点的坐标,根据交点在第一象限得到横纵坐标都大于0,联立得到关于k的不等式组,求出不等式组的解集即可得到k的范围,然后根据直线的倾斜角的正切值等于斜率k,根据正切函数图象得到倾斜角的范围.【解答】解:联立两直线方程得:,将①代入②得:x=③,把③代入①,求得y=,所以两直线的交点坐标为(,),因为两直线的交点在第一象限,所以得到,由①解得:k>﹣;由②解得k>或k<﹣,所以不等式的解集为:k>,设直线l的倾斜角为θ,则tanθ>,所以θ∈(,).故选B.【点评】此题考查学生会根据两直线的方程求出交点的坐标,掌握象限点坐标的特点,掌握直线倾斜角与直线斜率的关系,是一道综合题.10.有60件产品,编号为01至60,现从中抽取5件检验,用系统抽样的方法所确定的抽样编号是(
)
A.5,10,15,20,25B.5,12,31,39,57C.5,15,25,35,45
D.5,17,29,41,53参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.已知集合P=,Q=,那么等于
参考答案:略12.(5分)函数fM(x)=,其中M是非空数集且M是R的真子集,若在实数集R上有两个非空子集A,B满足A∩B=?,则函数F(x)=的值域为
.参考答案:{1}考点: 函数的值域;交集及其运算.专题: 新定义;函数的性质及应用;集合.分析: 对F(x)中的x属于什么集合进行分类讨论,利用题中新定义的函数求出f(x)的函数值,从而得到F(x)的值域即可.解答: 当x∈CR(A∪B)时,f(A∪B)(x)=0,fA(x)=0,fB(x)=0,∴F(x)==1,同理得:当x∈B时,F(x)=1;当x∈A时,F(x)=1;故F(x)=,则值域为{1}.故答案为:{1}.点评: 本题主要考查了函数的值域、分段函数,解答关键是对于新定义的函数fM(x)的正确理解,属于创新型题目.13.已知点在直线上,点Q在直线上,PQ的中点,且,则的取值范围是________.
参考答案:略14.给出下列命题:①存在实数x,使sinx+cosx=;;②若是第一象限角,且,则;③函数是奇函数;④函数的最小正周期是;⑤函数y=sin2x的图象向右平移个单位,得到y=sin(2x+)的图象.⑥函数在上是减函数.其中正确的命题的序号是
参考答案:①③15.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象(如图所示),则f(x)的解析式为.参考答案:【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】由题意求出A,T,利用周期公式求出ω,利用当x=时取得最大值2,求出φ,得到函数的解析式,即可得解.【解答】解:由题意可知A=2,T=4(﹣)=π,可得:ω==2,由于:当x=时取得最大值2,所以:2=2sin(2×+φ),可得:2×+φ=2kπ+,k∈Z,解得:φ=2kπ+,k∈Z,由于:|φ|<π,所以:φ=,函数f(x)的解析式:f(x)=2sin(2x+).故答案为:.【点评】本题是基础题,考查由y=Asin(ωx+φ)的部分图象确定其解析式,注意函数的周期的求法,考查计算能力,常考题型.16.若函数f(x)=x2﹣2ax+b(a>1)的定义域与值域都是[1,a],则实数b=.参考答案:5略17.函数,则
参考答案:2三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18..袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为.现在甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取…取后不放回,直到两人中有一人取到白球时即终止,每个球在每一次被取出的机会是等可能的.(1)求袋中原有白球的个数;(2)求取球两次终止的概率(3)求甲取到白球的概率.参考答案:(1)3个白球(2)(3)【分析】(1)设出袋中原有n个白球,写出试验发生包含的事件数和满足条件的事件数,根据等可能事件的概率公式得到关于n的方程,解方程即可.(2)由题意知本题是一个等可能事件的概率,试验发生包含的事件数7×6,满足条件的事件数4×3,根据等可能事件的概率公式写出满足条件的事件的概率.(3)甲先取,甲只有可能在第1次,第3次和第5次取球.这三种情况是互斥关系,根据互斥事件的概率公式得到结果.【详解】(1)设袋中原有n个白球,由题意知:,解得n=3(舍去n=﹣2),即袋中原有3个白球(2)记“取球两次终止”为事件A,(3)因为甲先取,所以甲只有可能在第1次或第3次或第5次取到白球记“甲取到白球”为事件B,【点睛】考查运用概率知识解决实际问题的能力,考查古典概型,准确计算是关键,是中档题19.(本小题满分12分)已知关于的方程:(1)当为何值时,方程表示圆(2)若圆与直线:相交于,且,求的值参考答案:解:(1)方程可化为,显然当即时,方程表示圆
……………5分(2)由(1)得圆方程为,圆心,半径则圆心到直线:得距离为……………8分,则,有
……10分,解得
……12分略20.已知二次函数,满足f(2)=0且函数F(x)=f(x)-x只有一个零点。(1)求函数f(x)的解析式;(2)问是否存在实数a,b(a<0)使f(x)的定义域为[a,b],值域为[2a,2b],如果存在,求出a、b,如果不存在,请说明理由。
参考答案:21.(12分)学校某研究性学习小组在对学生上课注意力集中情况的调查研究中,发现其在40分钟的一节课中,注意力指数y与听课时间x(单位:分钟)之间的关系满足如图所示的图象,当x∈(0,12]时,图象是二次函数图象的一部分,其中顶点A(10,80),过点B(12,78);当x∈[12,40]时,图象是线段BC,其中C(40,50).根据专家研究,当注意力指数大于62时,学习效果最佳.(1)试求y=f(x)的函数关系式;(2)教师在什么时段内安排内核心内容,能使得学生学习效果最佳?请说明理由.参考答案:【考点】函数解析式的求解及常用方法;函数的最值及其几何意义.【分析】(1)当x∈(0,12]时,设f(x)=a(x﹣10)2+80,把点(12,78)代入能求出解析式;当x∈[12,40]时,设y=kx+b,把点B(12,78)、C(40,50)代入能求出解析式.(2)由(1)的解析式,结合题设条件,列出不等式组,能求出老师就在什么时段内安排核心内容,能使得学生学习效果最佳【解答】解:(1)当x∈(0,12]时,设f(x)=a(x﹣10)2+80…(1分)过点(12,78)代入得,则…(3分)当x∈[12,40]时,设y=kx+b,过点B(12,78)、C(40,50)得,即y=﹣x+90…(6分)则的函数关系式为…(7分)(2)由题意得,或…(9分)得4<x≤12或12<x<28,4<x<28…(11分)则老师就在x∈(4,28)时段内安排核心内容,能使得学生学习效果最佳.…(12分)【点评】本题考查解析式的求法,考查不等式组的解法,解题时要认真审题,注意待定系数法的合理运用.22.已知6sin2α+sinαcosα﹣2cos2α=0,α∈(,π),求:①tanα的值;②sin(2α+)的值.参考答案:【考点】同角三角函数基本关系的运用;三角函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 文化活动的保安工作探讨计划
- 基于项目的美术教学计划
- 西南医科大学《灾害卫生学》2022-2023学年第一学期期末试卷
- 西南交通大学《数据结构与算法》2022-2023学年第一学期期末试卷
- 西华师范大学《日语二外》2021-2022学年第一学期期末试卷
- 2024年01月11141工程经济与管理期末试题答案
- 西昌学院《规划设计》2023-2024学年第一学期期末试卷
- 西北大学《网页设计》2023-2024学年第一学期期末试卷
- 西北大学《近代物理实验》2022-2023学年第一学期期末试卷
- 探究暖宝宝的发热原理说课稿-2023-2024学年九年级化学人教版下册
- 大学生劳动教育教程(高职)全套教学课件
- 《食品安全抽样检验工作规范》附有答案
- 山东师范大学成人教育《教育科学研究方法》期末考试题库
- 管道施工管理的技巧与策略
- 加强现场生产安全要求的培训课程
- 北京市昌平区2023-2024学年六年级上学期期末数学试卷
- 2024年现代农业的精细化管理
- 医院行政查房科室汇报课件
- 2023铁艺栏杆施工合同
- 有效管理的5大兵法学习分享-20.2.4
- 深度学习及其应用-复旦大学中国大学mooc课后章节答案期末考试题库2023年
评论
0/150
提交评论