2023届甘肃天水市太京中学高一数学第一学期期末学业水平测试试题含解析_第1页
2023届甘肃天水市太京中学高一数学第一学期期末学业水平测试试题含解析_第2页
2023届甘肃天水市太京中学高一数学第一学期期末学业水平测试试题含解析_第3页
2023届甘肃天水市太京中学高一数学第一学期期末学业水平测试试题含解析_第4页
2023届甘肃天水市太京中学高一数学第一学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,共60分)1.函数的零点所在的大致区间是()A. B.C. D.2.下列各角中与角终边相同的角是()A.-300° B.-60°C.600° D.1380°3.学校为了调查学生在课外读物方面的支出情况,抽出了一个容量为的样本,其频率分布直方图如图所示,其中支出在元的同学有30人,则的值为A.300 B.200C.150 D.1004.“”是“且”的()A.必要而不充分条件 B.充分而不必要条件C.充要条件 D.既不充分也不必要条件5.实数,,的大小关系正确的是()A. B.C. D.6.中国传统文化中很多内容体现了数学的“对称美”.如图所示的太极图是由黑白两个鱼形纹组成的圆形图案,充分体现了相互变化、对称统一的形式美、和谐美.给出定义:能够将圆(为坐标原点)的周长和面积同时平分的函数称为这个圆的“优美函数”.给出下列命题:①对于任意一个圆,其“优美函数”有无数个;②函数可以是某个圆的“优美函数”;③正弦函数可以同时是无数个圆的“优美函数”;④函数是“优美函数”的充要条件为函数的图象是中心对称图形A.①④ B.①③④C.②③ D.①③7.使不等式成立的充分不必要条件是()A. B.C. D.8.已知为三角形内角,且,若,则关于的形状的判断,正确的是A.直角三角形 B.锐角三角形C.钝角三角形 D.三种形状都有可能9.将一个直角三角形绕其一直角边所在直线旋转一周,所得的几何体为()A.一个圆台 B.两个圆锥C.一个圆柱 D.一个圆锥10.国家质量监督检验检疫局发布的相关规定指出,饮酒驾车是指车辆驾驶人员血液中的酒精含量大于或者等于,小于的驾驶行为;醉酒驾车是指车辆驾驶人员血液中的酒精含量大于或者等于的驾驶行为.一般的,成年人喝一瓶啤酒后,酒精含量在血液中的变化规律的“散点图”如图所示,且图中的函数模型为:,假设某成年人喝一瓶啤酒后至少经过小时才可以驾车,则的值为()(参考数据:,)A.5 B.6C.7 D.811.已知奇函数在上单调递减,且,则不等式的解集为()A. B.C. D.12.已知是第二象限角,,则()A. B.C. D.二、填空题(本大题共4小题,共20分)13.已知正三棱柱的所有顶点都在球的球面上,且该正三棱柱的底面边长为2,高为,则球的表面积为________14.经过点,且在轴上的截距等于在轴上的截距的2倍的直线的方程是__________15.一个几何体的三视图如图所示,则该几何体的体积为__________.16.已知函数(且)在上单调递减,且关于的方程恰有两个不相等的实数解,则的取值范围是_____三、解答题(本大题共6小题,共70分)17.已知函数的最小正周期为4,且满足(1)求的解析式(2)是否存在实数满足?若存在,请求出的取值范围;若不存在,请说明理由18.已知不等式的解集为(1)求a的值;(2)若不等式的解集为R,求实数m的取值范围.19.已知函数是定义在上的偶函数,且.(1)求实数的值,并证明;(2)用定义法证明函数在上增函数;(3)解关于的不等式.20.环保生活,低碳出行,电动汽车正成为人们购车的热门选择.某型号电动汽车,在一段平坦的国道进行测试,国道限速(不含).经多次测试得到,该汽车每小时耗电量(单位:)与速度(单位:)的下列数据:01040600132544007200为了描述国道上该汽车每小时耗电量与速度的关系,现有以下三种函数模型供选择:,,.(1)当时,请选出你认为最符合表格所列数据实际的函数模型,并求出相应的函数解析式;(2)现有一辆同型号汽车从地驶到地,前一段是的国道,后一段是的高速路,若已知高速路上该汽车每小时耗电量(单位:)与速度的关系是:,则如何行驶才能使得总耗电量最少,最少为多少?21.已知函数(1)当时,解方程;(2)当时,恒成立,求的取值范围22.已知函数,.(1)若角满足,求;(2)若圆心角为,半径为2的扇形的弧长为,且,,求.

参考答案一、选择题(本大题共12小题,共60分)1、C【解析】由题意,函数在上连续且单调递增,计算,,根据零点存在性定理判断即可【详解】解:函数在上连续且单调递增,且,,所以所以的零点所在的大致区间是故选:2、A【解析】与角终边相同的角为:.当时,即为-300°.故选A3、D【解析】根据频率分布直方图的面积和1,可得的频率为P=1-10(0.01+0.024+0.036)=0.3,又由,解得.选D.4、A【解析】根据充分条件和必要条件的定义结合不等式的性质分析判断【详解】当时,满足,而不成立,当且时,,所以,所以“”是“且”的必要而不充分条件,故选:A5、B【解析】根据指数函数、对数函数的单调性分别判断的取值范围,即可得结果.【详解】由对数函数的单调性可得,根据指数函数的单调性可得,即,,故选B.【点睛】本题主要考查对数函数的性质、指数函数的单调性及比较大小问题,属于中档题.解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间);二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.6、D【解析】根据定义分析,优美函数具备的特征是,函数关于圆心(即坐标原点)呈中心对称.【详解】对①,中心对称图形有无数个,①正确对②,函数是偶函数,不关于原点成中心对称.②错误对③,正弦函数关于原点成中心对称图形,③正确.对④,充要条件应该是关于原点成中心对称图形,④错误故选D【点睛】仔细阅读新定义问题,理解定义中优美函数的含义,找到中心对称图形,即可判断各项正误.7、A【解析】解一元二次不等式,再根据充分条件、必要条件的定义结合集合间的关系直接判断作答.【详解】解不等式得:,对于A,因,即是成立的充分不必要条件,A正确;对于B,是成立的充要条件,B不正确;对于C,因,且,则是成立的不充分不必要条件,C不正确;对于D,因,则是成立必要不充分条件,D不正确.故选:A8、C【解析】利用同角平方关系可得,,结合可得,从而可得的取值范围,进而可判断三角形的形状【详解】解:,,为三角形内角,,为钝角,即三角形为钝角三角形故选C【点睛】本题主要考查了利用同角平方关系的应用,其关键是变形之后从的符号中判断的取值范围,属于三角函数基本技巧的运用9、D【解析】依题意可知,这是一个圆锥.10、B【解析】由散点图知,该人喝一瓶啤酒后个小时内酒精含量大于或者等于,所以,根据题意列不等式,解不等式结合即可求解.【详解】由散点图知,该人喝一瓶啤酒后个小时内酒精含量大于或者等于,所以所求,由,即,所以,即,所以,因为,所以最小为,所以至少经过小时才可以驾车,故选:B.11、A【解析】由题意可得在单调递减,且,从而可得当或时,,当或时,,然后分和求出不等式的解集【详解】因为奇函数在上单调递减,且,所以在单调递减,且,所以当或时,,当或时,,当时,不等式等价于,所以或,解得,当时,不等式等价于,所以或,解得或,综上,不等式的解集为,故选:A12、B【解析】利用同角三角函数基本关系式求解.【详解】因为是第二象限角,,且,所以.故选:B.二、填空题(本大题共4小题,共20分)13、【解析】首先判断正三棱柱外接球的球心,即上下底面正三角形中心连线的中点,然后构造直角三角形求半径,代入公式求解.【详解】如图:设和分别是上下底面等边三角形的中心,由题意可知连线的中点就是三棱柱外接球的球心,连接,是等边三角形,且,,,球的表面积.故答案为:【点睛】本题考查求几何体外接球的表面积的问题,意在考查空间想象能力和转化与化归和计算能力,属于基础题型.14、或【解析】设所求直线方程为,将点代入上式可得或.考点:直线的方程15、【解析】该几何体是一个半圆柱,如图,其体积为.考点:几何体的体积.16、【解析】利用函数是减函数,根据对数的图象和性质判断出的大致范围,再根据为减函数,得到不等式组,利用函数的图象,方程的解的个数,推出的范围【详解】函数(且),在上单调递减,则:;解得,由图象可知,在上,有且仅有一个解,故在上,同样有且仅有一个解,当即时,联立,则,解得或1(舍去),当时由图象可知,符合条件,综上:的取值范围为.故答案为【点睛】本题考查函数的单调性和方程的零点,对于分段函数在定义域内是减函数,除了每一段都是减函数以外,还要注意右段在左段的下方,经常会被忽略,是一个易错点;复杂方程的解通常转化为函数的零点,或两函数的交点,体现了数学结合思想,属于难题.三、解答题(本大题共6小题,共70分)17、(1)(2)存在;【解析】(1)因为的最小正周期为4,可求得,再根据满足,可知的图象关于点对称,结合,即可求出的值,进而求出结果;(2)由(1)可得,再根据,在同一坐标系中作出与的大致图象,根据图像并结合的单调性,建立方程,即可求出,由此即可求出结果.【小问1详解】解:因为的最小正周期为4,所以因为满足,所以的图象关于点对称,所以,所以,即,又,所以所以的解析式为【小问2详解】解:由,可得当时,,在同一坐标系中作出与的大致图象,如图所示,当时,,再结合的单调性可知点的横坐标即方程的根,解得结合图象可知存在实数满足,的取值范围是18、(1);(2).【解析】(1)根据题意得到方程的两根为,由韦达定理可得到结果;(2)不等式的解集为R,则解出不等式即可.【详解】(1)由已知,,且方程的两根为.有,解得;(2)不等式的解集为R,则,解得,实数的取值范围为.【点睛】这个题目考查了根和系数的关系,涉及到两根关系的题目,多数是可以考虑韦达定理的应用的,也考查到二次函数方程根的个数的问题.19、(1),证明见解析(2)证明见解析(3)【解析】(1)由偶函数性质求,由列方程求,再证明;(2)利用单调性定义证明函数的单调性;(3)利用函数的性质化简可求.【小问1详解】因为函数是定义在R上的偶函数∴,综上,从而【小问2详解】证明:因为设,所以又,∴所以∴在上为增函数;【小问3详解】∵.∵偶函数在上为增函数.在上为减函数∴20、(1)选择,;(2)当这辆车在国道上的行驶速度为,在高速路上的行驶速度为时,该车从地到地的总耗电量最少,最少为.【解析】(1)根据当时,无意义,以及是个减函数,可判断选择,然后利用待定系数法列方程求解即可;(2)利用二次函数的性质可判断在国道上的行驶速度为耗电最少,利用对勾函数的性质可判断在高速路上的行驶速度为时耗电最少,从而可得答案.【详解】(1)对于,当时,它无意义,所以不合题意;对于,它显然是个减函数,这与矛盾;故选择.根据提供的数据,有,解得,当时,.(2)国道路段长为,所用时间为,所耗电量,因为,当时,;高速路段长为,所用时间为,所耗电量为,由对勾函数的性质可知,在上单调递增,所以;故当这辆车在国道上的行驶速度为,在高速路上的行驶速度为时,该车从地到地的总耗电量最少,最少为.【点睛】方法点睛:与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.21、(1)(2)【解析】(1)当时,,求出,把原方程转化为指数方程,再利用换元法求解,即可求出结果;(2)⇔|a+1|≥2x−12x,令,,则对任意恒成立,利用函数的单调性求出的最大值,再求解绝对值不等式可得实

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论