版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021年北京县寺中学高二数学文下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知U=R,,则(CUA)∩B=()A.[3,+∞)B.(3,+∞)C.[1,3]D.(1,3)参考答案:B【考点】交、并、补集的混合运算.【分析】首先整理集合A,解关于x的绝对值不等式,再根据指数函数的值域做出集合B的范围,求出补集再写出交集.【解答】解:∵A={x||x﹣2|≤1}={x|1≤x≤3}∴CUA={x<1或x>3},∵={x|x>1}∴(CUA)∩B={x|x>3}故选B.2.已知, ,且,则等于
(
)
A.-1
B.-9
C.9
D.1 参考答案:A3.已知函数f(x)=﹣log3x,在下列区间中,包含f(x)零点的区间是()A.(0,1) B.(3,9) C.(1,3) D.(9,+∞)参考答案:B【考点】函数零点的判定定理.【分析】判断函数的单调性,求出f(3),f(9)函数值的符号,利用零点判定定理判断即可.【解答】解:函数f(x)=﹣log3x,是减函数,又f(3)=2﹣log33=1>0,f(9)=﹣log39=﹣<0,可得f(3)f(9)<0,由零点判定定理可知:函数f(x)=﹣log3x,包含零点的区间是:(3,9).故选:B.4.若点P(3,4)和点Q(a,b)关于直线对称,则(
)A. B. C. D.参考答案:A5.已知某几何体的三视图如图所示,其中正视图中半圆的直径为,则该几何体的体积为()A.B.
C.D.参考答案:C略6.p:x>1,q:x>0,则p是q的()A.必要不充分条件 B.充分不必要条件C.充要条件 D.既不充分也不必要条件参考答案:A【考点】必要条件、充分条件与充要条件的判断.【分析】由p,q的x的范围,结合充分必要条件的定义判断即可.【解答】解:p:x>1,q:x>0,则p?q,当q推不出p,故p是q的充分不必要条件,故选:A7.在等差数列中,则
(
)A.24
B.22
C.20
D.-8参考答案:A略8.如图所示,正方体的棱长为1,分别是棱,的中点,过直线的平面分别与棱、交于,设,,给出以下四个命题:(1)平面平面;(2)当且仅当x=时,四边形的面积最小;(3)四边形周长,是单调函数;(4)四棱锥的体积为常函数;以上命题中假命题的序号为()A.(1)(4)
B.(2)
C.(3)
D.(3)(4)参考答案:C9.已知椭圆与双曲线有相同的焦点,则的值为(
)
A.
B.
C.4
D.10参考答案:C略10.函数在处有极值10,则m,n的值是(
)
A.
B.
C.
D.参考答案:B略二、填空题:本大题共7小题,每小题4分,共28分11.用数学归纳法证明:,当时,左边为__________.参考答案:等式的左边是以1为首项,为公比的等比数列的前项的和,观察当时,等式左边等于,故答案为.12.命题“若x,y都是正数,则x+y为正数”的否命题是____________________________参考答案:13.已知函数f(x)=lnx+ax2+(2﹣2a)x+(a>0),若存在三个不相等的正实数x1,x2,x3,使得=3成立,则a的取值范围是
.参考答案:(,)考点:利用导数研究函数的极值.专题:导数的综合应用.分析:若存在三个不相等的正实数x1,x2,x3,使得=3成立,等价为方程f(x)=3x存在三个不相等的实根,构造函数,求函数的导数,研究函数的极值,利用极大值大于0,极小值小于0,即可得到结论.解答: 解:若存在三个不相等的正实数x1,x2,x3,使得=3成立,即方程f(x)=3x存在三个不相等的实根,即lnx+ax2+(2﹣2a)x+=3x,lnx+ax2﹣(1+2a)x+=0有三个不相等的实根,设g(x)=lnx+ax2﹣(1+2a)x+,则函数的导数g′(x)=+2ax﹣(1+2a)==,由g′(x)=0得x=1,x=,则g(1)=a﹣1﹣2a+=﹣1﹣a+,g()=ln+a()2﹣(1+2a)+=﹣1﹣ln2a.若=1,即a=时,g′(x)=≥0,此时函数g(x)为增函数,不可能有3个根,若>1,即0<a<时,由g′(x)>0得x>或0<x<1,此时函数递增,由g′(x)<0得1<x<,此时函数递减,则当x=1时函数g(x)取得极大值g(1)=﹣1﹣a+,当x=时函数g(x)取得极小值g()=﹣1﹣ln2a,此时满足g(1)=﹣1﹣a+>0且g()=﹣1﹣ln2a<0,即,即,则,解得<a<.同理若<1,即a>时,由g′(x)>0得x>1或0<x<,此时函数递增,由g′(x)<0得<x<1,此时函数递减,则当x=1时函数g(x)取得极小值g(1)=﹣1﹣a+,当x=时函数g(x)取得极大值g()=﹣1﹣ln2a,此时满足g(1)=﹣1﹣a+<0且g()=﹣1﹣ln2a>0,即,∵a>,∴2a>1,则ln2a>0,则不等式ln2a<﹣1不成立,即此时不等式组无解,综上<a<.故答案为:点评:本题主要考查导数的综合应用,根据条件转化为方程f(x)=3x存在三个不相等的实根,构造函数,利用导数研究函数的极值是解决本题的关键.综合性较强,难度较大.14.如图平面直角坐标系中,椭圆的离心率,分别是椭圆的左、右两个顶点,圆的半径为,过点作圆的切线,切点为,在轴的上方交椭圆于点.则
.参考答案:15.设全集U=R,集合M={x|2a﹣1<x<4a,a∈R},N={x|1<x<2},若N?M,则实数a的取值范围是.参考答案:[,1]【考点】集合关系中的参数取值问题.【分析】由题意可得2a﹣1≤1
且4a≥2,由此解得实数a的取值范围.【解答】解:∵全集U=R,集合M={x|2a﹣1<x<4a,a∈R},N={x|1<x<2},N?M,∴2a﹣1≤1
且4a≥2,解得2≥a≥,故实数a的取值范围是[,1],故答案为[,1].16.(12分)某车站每天上午发出两班客车,第一班客车在8:00,8:20,8:40这三个时刻随机发出,且在8:00发出的概率为,8:20发出的概率为,8:40发出的概率为;第二班客车在9:00,9:20,9:40这三个时刻随机发出,且在9:00发出的概率为,9:20发出的概率为,9:40发出的概率为.两班客车发出时刻是相互独立的,一位旅客预计8:10到站.求:(1)请预测旅客乘到第一班客车的概率;(2)旅客候车时间的分布列;(3)旅客候车时间的数学期望.参考答案:(1)∵在8:00发出的概率为,8:20发出的概率为,第一班若在8:20或8:40发出,则旅客能乘到,这两个事件是互斥的,根据互斥事件的概率公式得到其概率为P=+=.(2)由题意知候车时间X的可能取值是10,30,50,70,90根据条件中所给的各个事件的概率,得到P(X=10)=,P(X=30)=,P(X=50)=,P(X=70)=,P(X=90)=,∴旅客候车时间的分布列为:候车时间X(分) 10 30 50 70 90概率 (3)候车时间的数学期望为10×+30×+50×+70×+90×=5++++=30.即这旅客候车时间的数学期望是30分钟.17.若满足,则的最大值
.参考答案:2三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知点P(x,y)在圆x2+(y-1)2=1上运动.(1)求的最大值与最小值;(2)求2x+y的最大值与最小值参考答案:(1)设=k,则k表示点P(x,y)与点(2,1)连线的斜率.当直线y-1=k(x-2)与圆相切时,k取得最大值与最小值.由=1,解得k=±,∴的最大值为,最小值为-.(2)设2x+y=m,则m表示直线2x+y=m在y轴上的截距.当该直线与圆相切时,m取得最大值与最小值.由=1,解得m=1±,∴2x+y的最大值为1+,最小值为1-.
19.在直角坐标系中,圆的参数方程为,(为参数,).以为极点,轴正半轴为极轴,并取相同的单位长度建立极坐标系,直线的极坐标方程为.写出圆心的极坐标,并求当为何值时,圆上的点到直线的最大距离为3.参考答案:解析:由已知圆心O的直角坐标为,,点O在第三象限,故,所以圆心O的极坐标为………………4分直线l的直角坐标方程为,圆心O到l的距离,圆O上的点到直线l的距离的最大值为解得…………….10分
略20.(16分)已知函数f(x)=lnx+ax2(x>0),g(x)=bx,其中a,b是实数.(1)若a=﹣,求f(x)的最大值;(2)若b=2,且直线y=g(x)﹣是曲线y=f(x)的一条切线,求实数a的值;(3)若a<0,且b﹣a=,函数h(x)=f(x)﹣g(2x)有且只有两个不同的零点,求实数a的取值范围.参考答案:【考点】利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【分析】(1)求出函数的导数,解关于导函数的方程,求出函数的单调区间,从而求出函数的最值问题;(2)设出切点坐标,表示出切线方程,得到lnx0﹣x0+1=0,设t(x)=lnx﹣x+1,x>0,根据函数的单调性求出a的值即可;(3)通过讨论a的范围,求出函数的单调性,结合函数h(x)=f(x)﹣g(2x)有且只有两个不同的零点,求出a的范围即可.【解答】解:(1)由题意,,x>0,∴,令f'(x)=0,x=1,…(2分)x(0,1)1(1,+∞)f'(x)+0﹣f(x)↗↘从上表可知,当x=1时,f(x)取得极大值,且是最大值,∴f(x)的最大值是.…(2)由题意,直线是曲线y=lnx+ax2的一条切线,设切点,∴切线的斜率为,∴切线的方程为,即,∴…(6分)∴lnx0﹣x0+1=0,设t(x)=lnx﹣x+1,x>0,∴,当x∈(0,1)时,t'(x)>0,当x∈(1,+∞)时,t'(x)<0,∴t(x)在x=1处取得极大值,且是最大值,∴t(x)max=t(1)=0,∵t(x0)=0,∴x0=1,此时.
…(10分)(3)∵,∴,x>0,∴,(ⅰ)当﹣1≤a≤0时,当0<x<1时,h'(x)>0,当x>1时,h'(x)<0,∴函数h(x)在x=1处取得极大值,且是最大值,∴h(x)≤h(1)=﹣1,函数h(x)在区间(0,+∞)上无零点,…(12分)(ⅱ)当a<﹣1时,令h'(x)=0,得,x2=1,由(2)可知,t(x)≤0,即lnx≤x﹣1,∴,其中,又h(1)=﹣a﹣1>0,且函数h(x)在(0,1)上不间断,∴函数h(x)在(0,1)上存在零点,另外,当x∈(0,1)时,h'(x)<0,故函数h(x)在(0,1)上是单调减函数,∴函数h(x)在(0,1)上只有一个零点,∵h(2)=ln2+a×22﹣(2a+1)×2=ln2﹣2<0,又h(1)=﹣a﹣1>0,且函数h(x)在(1,+∞)上不间断,∴函数h(x)在(1,+∞)上存在零点,另外,当x∈(1,+∞)时,h'(x)>0,故函数h(x)在(1,+∞)上是单调增函数,∴函数h(x)在(1,+∞)上只有一个零点,∴当﹣1≤a≤0时,h(x)在区间(0,+∞)上无零点,当a<﹣1时,h(x)在区间(0,+∞)上恰有2个不同的零点,综上所述,实数a的取值范围是(﹣∞,﹣1).
…(16分)【点评】本题考查了切线方程问题,考查函数的单调性、最值问题,考查导数的应用以及分类讨论思想,是一道综合题.21.(本题满分12分)如图,正方形所在平面与平面ABC垂直,是和的交点,且.(1)求证:⊥平面;(2)求直线与平面所成角的大小;(3)求锐二面角的大小.
参考答案
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 代理记账服务合同样本
- 2024山地林权承包合同范本
- 工程质量责任合同范本阅读
- 常见劳务协议书样本
- 2024年度品牌授权合同标的及相关服务说明
- 海洋货品运输合同范本
- 2024个人机动车买卖合同模板
- 房屋买卖违约赔偿协议
- 2024合同交底的具体步骤合同交底范本条文2
- 基础版员工劳动合同书样本
- 食用香料香精产品生产许可实施细则
- 全面推进依法行政课件
- 船体强度与结构设计,课程设计
- 无限极制度(新人)讲解版课件
- MSD潮湿敏感器件防护培训课件
- 十分钟EE从入门到精通2.0
- 六年级英语上册课件-Unit4 I have a pen pal 人教pep (共23张PPT)
- 赏识教育培训课程课件
- 山西恒泰佳源生物科技有限公司新建年产15万吨乙酸钠项目环评报告书
- 工程开工令模板
- 船用柴油机的发展与分类课件
评论
0/150
提交评论