




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省泰州市兴化安丰高级中学2021年高二数学文上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.在△ABC中,若AB=,BC=3,∠C=120°,则AC=()A.1 B.2 C.3 D.4参考答案:A【考点】余弦定理的应用.【分析】直接利用余弦定理求解即可.【解答】解:在△ABC中,若AB=,BC=3,∠C=120°,AB2=BC2+AC2﹣2AC?BCcosC,可得:13=9+AC2+3AC,解得AC=1或AC=﹣4(舍去).故选:A.2.已知函数,若关于的不等式的解集为,则实数的值为(
)A.6
B.7
C.9
D.10参考答案:C略3.已知双曲线的离心率为,则的渐近线方程为(
)A.
B.
C.
D.参考答案:C4.命题“如果x≥a2+b2,那么x≥2ab”的逆否命题是()A.如果x<a2+b2,那么x<2ab B.如果x≥2ab,那么x≥a2+b2C.如果x<2ab,那么x<a2+b2 D.如果x≥a2+b2,那么x<2ab参考答案:C【考点】四种命题间的逆否关系.【分析】根据命题的逆否命题的概念,即是逆命题的否命题,也是逆命题的否命题;写出逆命题,再求其否命题即可.【解答】解:命题的逆命题是:如果x≥2ab,那么x≥a2+b2∴逆否命题是:如果x<2ab,那么x<a2+b2,故选:C5.F1、F2为椭圆的焦点,P为椭圆上一点,∠F1PF2=90°,且|PF2|<|PF1|,已知椭圆的离心率为,则∠PF1F2∶∠PF2F1=(
)(A)1∶5
(B)1∶3
(C)1∶2
(D)1∶1参考答案:A6.已知二次函数,若在区间[0,1]内存在一个实数,使,则实数的取值范围是
(
)A.
B.
C.
D.参考答案:B略7.函数的最大值为
()A.
B.
C.
D.参考答案:B8.参数方程(为参数)化为普通方程是(
)。A
BC
D参考答案:C略9.如图,在正方体ABCD﹣A1B1C1D1中,P是侧面BB1C1C内一动点,若P到直线BC与直线C1D1的距离相等,则动点P的轨迹所在的曲线是()A.直线 B.圆 C.双曲线 D.抛物线参考答案:D【考点】抛物线的定义;棱柱的结构特征.【分析】由线C1D1垂直平面BB1C1C,分析出|PC1|就是点P到直线C1D1的距离,则动点P满足抛物线定义,问题解决.【解答】解:由题意知,直线C1D1⊥平面BB1C1C,则C1D1⊥PC1,即|PC1|就是点P到直线C1D1的距离,那么点P到直线BC的距离等于它到点C1的距离,所以点P的轨迹是抛物线.故选D.10.过抛物线的焦点作直线交抛物线于,、,两点,若,则等于(
)
A.4p
B.5pC.6p
D.8p参考答案:A略二、填空题:本大题共7小题,每小题4分,共28分11.设和为不重合的两个平面,给出下列命题:(1)若内的两条相交直线分别平行于内的两条直线,则平行于;(2)若外一条直线与内的一条直线平行,则和平行;(3)设和相交于直线,若内有一条直线垂直于,则和垂直;(4)直线与垂直的充分必要条件是与内的两条直线垂直.上面命题中,真命题的序号
(写出所有真命题的序号).参考答案:略12.在三次独立重复试验中,事件A在每次试验中发生的概率相同,若事件A至少发生一次的概率为,则事件A恰好发生一次的概率为
. 参考答案:
9/6413.已知点A(λ+1,μ-1,3),B(2λ,μ,λ-2μ),C(λ+3,μ-3,9)三点共线,则实数λ+μ=________.参考答案:14.已知定义在R上的奇函数,当时,,则解析式为____________.参考答案:略15.给出平面区域为图中四边形ABOC内部及其边界,目标函数为z=ax﹣y,若当且仅当x=1,y=1时,目标函数z取最小值,则实数a的取值范围是. 参考答案:【考点】简单线性规划. 【专题】计算题;规律型;数形结合;转化思想;不等式的解法及应用. 【分析】根据约束条件画出可行域,利用几何意义求最值,z=ax﹣y表示直线在y轴上的截距的相反数,a表示直线的斜率,只需求出a取值在什么范围时,直线z=ax﹣y在y轴上的截距最优解在点A处即可. 【解答】解:由可行域可知,直线AC的斜率==﹣1, 直线AB的斜率==﹣, 当直线z=ax﹣y的斜率介于AC与AB之间时, A(1,1)是该目标函数z=ax﹣y的唯一最优解, 所以﹣1<a<﹣ 故答案为:. 【点评】本题主要考查了简单的线性规划,以及利用几何意义求最值的方法反求参数的范围,属于中档题.解答的关键是根据所给区域得到关于直线斜率的不等关系,这是数学中的数形结合的思想方法. 16.不等式的解集是
.参考答案:17.设向量,,且,则的值为
.参考答案:168∵,∴设,又∵,,,即,解得,∴.故.
三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.的三个顶点为,求:(1)所在直线的方程;(2)边的垂直平分线的方程。参考答案:略19.甲、乙两位同学进行篮球三分球投篮比赛,甲每次投中的概率为,乙每次投中的概率为,每人分别进行三次投篮.(Ⅰ)记甲投中的次数为ξ,求ξ的分布列及数学期望Eξ;(Ⅱ)求乙至多投中2次的概率;(Ⅲ)求乙恰好比甲多投进2次的概率.参考答案:【考点】CH:离散型随机变量的期望与方差;CA:n次独立重复试验中恰好发生k次的概率.【分析】(Ⅰ)确定ξ的可能取值,求出相应的概率,即可得到ξ的分布列及数学期望Eξ;(Ⅱ)利用对立事件,可得乙至多投中2次的概率;(Ⅲ)设乙比甲多投中2次为事件A,乙恰投中2次且甲恰投中0次为事件B1,乙恰投中3次且甲恰投中1次为事件B2,则A=B1∪B2,利用互斥事件的概率公式,即可求得结论.【解答】解:(Ⅰ)ξ的可能取值为:0,1,2,3.
…则;;;.ξ的分布列如下表:ξ0123P…∴.
…(Ⅱ)利用对立事件,可得乙至多投中2次的概率为.
…(Ⅲ)设乙比甲多投中2次为事件A,乙恰投中2次且甲恰投中0次为事件B1,乙恰投中3次且甲恰投中1次为事件B2,则A=B1∪B2,B1,B2为互斥事件.
…所以P(A)=P(B1)+P(B2)=.所以乙恰好比甲多投中2次的概率为.
…20.设命题p:实数x满足x2﹣4ax+3a2<0,其中a>0,命题q:实数x满足.(Ⅰ)若a=1,且p∧q为真,求实数x的取值范围;(Ⅱ)若¬p是¬q的充分不必要条件,求实数a的取值范围.参考答案:【考点】充分条件;命题的真假判断与应用.【分析】(1)p∧q为真,即p和q均为真,分别解出p和q中的不等式,求交集即可;(2)﹁p是﹁q的充分不必要条件?q是p的充分不必要条件,即q?p,反之不成立.即q中的不等式的解集是p中的不等式解集的子集.【解答】解:(1)a=1时,命题p:x2﹣4x+3<0?1<x<3命题q:??2<x≤3,p∧q为真,即p和q均为真,故实数x的取值范围是2<x<3(2)﹁p是﹁q的充分不必要条件?q是p的充分不必要条件,即q?p,反之不成立.即q中的不等式的解集是p中的不等式解集的子集.由(1)知命题q:2<x≤3,命题p:实数x满足x2﹣4ax+3a2<0?(x﹣a)(x﹣3a)<0由题意a>0,所以命题p:a<x<3a,所以,所以1<a≤221.设{an}是正数组成的数列,其前n项和为Sn,并且对于所有的nN+,an与2的等差中项等于Sn与2的等比中项.
1)写出数列{an}的前3项.
2)
求数列{an}的通项公式(写出推证过程).参考答案:解析:1)由题意,当n=1时,有,S1=a1,∴
a1=2
当n=2时
有
S2=a1+a2
a2>0
得a2=6
同理
a3=10
故该数列的前三项为2,6,10.
2)由题意,
∴Sn=,Sn+1=
∴an+1=Sn+1-Sn=
∴(an+1+an)(an+1-an-4)=0w.w.w.k.s.5.u.c.o.m
∵an+1+an≠0,∴an+1-an=4
即数列{an}为等差数列。22.三棱柱ABC﹣A1B1C1中,AB=AC,侧棱AA1⊥平面ABC,E,F分别为A1B1,A1C1的中点.(Ⅰ)求证:B1C1∥面BEF;(Ⅱ)过点A存在一条直线与平面BEF垂直,请你在图中画出这条直线(保留作图痕迹,不必说明理由).参考答案:【考点】直线与平面平行的判定;直线与平面垂直的判定.【分析】(Ⅰ)利用已知及三角形的中位线定理可证EF∥B1C1,进而利用线面平行的判定
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 45417-2025汽车再生制动功能缺陷分析指南
- 海南软件职业技术学院《卫星导航定位原理与应用》2023-2024学年第二学期期末试卷
- 海北藏族自治州2025年三年级数学第二学期期末学业水平测试试题含解析
- 寒假安全教育2025年
- 彩印印刷工作总结
- 2024年四月抗爆空间隐蔽工程装修委托验收标准
- IT知识全面解析
- 江西省卫生类事业单位竞聘-财会类近年考试真题库-含答案解析
- 养生专业培训
- 江西省赣州市四校协作体2025届高三适应性调研考试化学试题含解析
- 电动摩托车项目可行性实施报告
- 中建“大商务”管理实施方案
- 甲壳素、壳聚糖材料
- 高三英语语法填空专项训练100(附答案)及解析
- 菜鸟驿站招商加盟合同范本
- 2024年高考地理真题完全解读(甘肃卷)
- DL∕T 806-2013 火力发电厂循环水用阻垢缓蚀剂
- 人教版 九年级上册音乐 第二单元 鳟鱼 教案
- 四年级美术测国测复习题答案
- 《宽容别人 快乐自己》班会课件
- 2024光伏电站索悬柔性支架施工方案
评论
0/150
提交评论