版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023高考数学教案七篇大全2023高考数学教案七篇大全
高考数学教案都有哪些?数学该术语还包括胚胎、可积性等专出名词。但这些特别符号和专出名词的使用是有缘由的:数学比日常用词要求更精确。数学经济学家把这种对语言和规律精确 性的要求称为“严谨”。下面是我为大家带来的2023高考数学教案七篇,盼望大家能够喜爱!
2023高考数学教案(篇1)
一、教学内容分析
圆锥曲线的定义反映了圆锥曲线的本质属性,它是很多次实践后的高度抽象,恰当地利用定义解题,很多时候能以简驭繁。因此,在学习了椭圆、双曲线、抛物线的定义及标准方程、几何性质后,再一次强调定义,学会利用圆锥曲线定义来娴熟的解题”。
二、同学学习状况分析
我所任教班级的同学参加课堂教学活动的乐观性强,思维活跃,但计算力量较差,推理力量较弱,使用数学语言的表达力量也略显不足。
三、设计思想
由于这部分学问较为抽象,假如离开感性熟悉,简单使同学陷入逆境,降低学习热忱。在教学时,借助多媒体动画,引导同学主动发觉问题、解决问题,主动参加教学,在轻松开心的环境中发觉、猎取新知,提高教学效率。
四、教学目标
1、深刻理解并娴熟把握圆锥曲线的定义,能敏捷应用定义解决问题;娴熟把握焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法;能结合平面几何的基本学问求解圆锥曲线的方程。
2、通过对练习,强化对圆锥曲线定义的理解,提高分析、解决问题的力量;通过对问题的不断引申,细心设问,引导同学学习解题的一般方法。
3、借助多媒体帮助教学,激发学习数学的爱好。
五、教学重点与难点:
教学重点
1、对圆锥曲线定义的理解
2、利用圆锥曲线的定义求“最值”
3、“定义法”求轨迹方程
教学难点:
巧用圆锥曲线定义解题
六、教学过程设计
【设计思路】
(一)开门见山,提出问题
一上课,我就直截了当地给出例题1:
(1)已知A(-2,0),B(2,0)动点M满意|MA|+|MB|=2,则点M的轨迹是()。
(A)椭圆(B)双曲线(C)线段(D)不存在
(2)已知动点M(x,y)满意(x1)2(y2)2|3x4y|,则点M的轨迹是()。
(A)椭圆(B)双曲线(C)抛物线(D)两条相交直线
【设计意图】
定义是揭示概念内涵的规律方法,熟识不同概念的不同定义方式,是学习和讨论数学的一个必备条件,而通过一个阶段的学习之后,同学们对圆锥曲线的定义已有了肯定的熟悉,他们是否能真正把握它们的本质,是我本节课首先要弄清晰的问题。
为了加深同学对圆锥曲线定义理解,我以圆锥曲线的定义的运用为主线,细心预备了两道练习题。
【学情预设】
估量多数同学能够很快回答出正确答案,但是部分同学对于圆锥曲线的定义可能并未真正理解,因此,在同学们回答后,我将要求同学接着说出:若想答案是其他选项的话,条件要怎么改?这对于已学完圆锥曲线这部分学问的同学来说,并不是什么难事。但问题(2)就可能让同学们费一番周折——假如有同学提出:可以利用变形来解决问题,那么我就可以循着他的思路,先对原等式做变形:(x1)2(y2)25
这样,很快就能得出正确结果。如若不然,我将启发他们从等式两端的式子|3x4y|5入手,考虑通过适当的变形,转化为同学们熟知的两个距离公式。
在对同学们的解答做出推断后,我将把问题引申为:该双曲线的中心坐标是,实轴长为,焦距为。以深化对概念的理解。
(二)理解定义、解决问题
例2:
(1)已知动圆A过定圆B:x2y26x70的圆心,且与定圆C:xy6x910相内切,求△ABC面积的最大值。
(2)在(1)的条件下,给定点P(-2,2),求|PA|
【设计意图】
运用圆锥曲线定义中的数量关系进行转化,使问题化归为几何中求最大(小)值的模式,是解析几何问题中的一种常见题型,也是同学们比较简单混淆的一类问题。例2的设置就是为了便利同学的辨析。
【学情预设】
依据以往的阅历,多数同学看上去都能顺当解答本题,但真正能完整解答的可能并不多。事实上,解决本题的关键在于能精确 写出点A的轨迹,有了练习题1的铺垫,这个问题对同学们来讲就显得颇为简洁,因此面对例2(1),多数同学应当能精确 给出解答,但是对于例2(2)这样相对比较生疏的问题,同学就无从下手。我提示同学把3/5和离心率联系起来,这样就简单和其次定义联系起来,从而找到解决本题的突破口。
(三)自主探究、深化熟悉
假如时间允许,练习题将为同学们供应一次数学猜想、试验的机会。
练习:
设点Q是圆C:(x1)2225|AB|的最小值。3y225上动点,点A(1,0)是圆内一点,AQ的垂直平分线与CQ交于点M,求点M的轨迹方程。
引申:若将点A移到圆C外,点M的轨迹会是什么?
【设计意图】练习题设置的目的是为同学课外自主探究学习供应平台,当然,假如课堂上时间允许的话,
可借助“多媒体课件”,引导同学对自己的结论进行验证。
【学问链接】
(一)圆锥曲线的定义
1、圆锥曲线的第肯定义
2、圆锥曲线的统肯定义
(二)圆锥曲线定义的应用举例
1、双曲线1的两焦点为F1、F2,P为曲线上一点,若P到左焦点F1的距离为12,求P到右准线的距离。
2、|PF1||PF2|2P为等轴双曲线x2y2a2上一点,F1、F2为两焦点,O为双曲线的中心,求的|PO|取值范围。
3、在抛物线y22px上有一点A(4,m),A点到抛物线的焦点F的距离为5,求抛物线的方程和点A的坐标。
4、例题:
(1)已知点F是椭圆1的右焦点,M是这椭圆上的动点,A(2,2)是一个定点,求|MA|+|MF|的最小值。
(2)已知A(,3)为肯定点,F为双曲线1的右焦点,M在双曲线右支上移动,当|AM||MF|最小时,求M点的坐标。
(3)已知点P(-2,3)及焦点为F的抛物线y,在抛物线上求一点M,使|PM|+|FM|最小。
5、已知A(4,0),B(2,2)是椭圆1内的点,M是椭圆上的动点,求|MA|+|MB|的最小值与最大值。
七、教学反思
1、本课将借助于,将使全体同学参加活动成为可能,使原来令人难以理解的抽象的数学理论变得形象,生动且通俗易懂,同时,运用“多媒体课件”帮助教学,节约了板演的时间,从而给同学留出更多的时间自悟、自练、自查,充分发挥同学的主体作用,这充分显示出“多媒体课件”与探究合作式教学理念的有机结合的教学优势。
2、利用两个例题及其引申,通过一题多变,层层深化的探究,以及对猜想结果的检测讨论,培育同学思维力量,使同学从学会一个问题的求解到把握一类问题的解决方法,循序渐进的让同学把握这类问题的解法;将同学简单混淆的两类求“最值问题”并为一道题,便利同学进行比较、分析。虽然从表面上看,我这一堂课的教学容量不大,但事实上,同学们的思维运动量并不会小。
总之,如何更好地选择符合同学详细状况,满意教学目标的例题与练习、敏捷把握课堂教学节奏仍是我今后工作中的一个重要讨论课题,而要能真正进行素养教育,培育同学的创新意识,自己首先必需更新观念——在教学中适度使用多媒体技术,让同学有参加教学实践的机会,能够使同学在学习新学问的同时,激发起求知的欲望,在寻求解决问题的方法的过程中获得自信和胜利的体验,于不知不觉中改善了他们的思维品质,提高了数学思维力量。
2023高考数学教案(篇2)
教学目标
1、明确等差数列的定义。
2、把握等差数列的通项公式,会解决知道中的三个,求另外一个的问题
3、培育同学观看、归纳力量。
教学重点
1、等差数列的概念;
2、等差数列的通项公式
教学难点
等差数列“等差”特点的理解、把握和应用
教具预备
投影片1张
教学过程
(I)复习回顾
师:上两节课我们共同学习了数列的定义及给出数列的两种方法通项公式和递推公式。这两个公式从不同的角度反映数列的特点,下面看一些例子。(放投影片)
(Ⅱ)讲授新课
师:看这些数列有什么共同的特点?
1,2,3,4,5,6;①
10,8,6,4,2,…;②
生:乐观思索,找上述数列共同特点。
对于数列①(1≤n≤6);(2≤n≤6)
对于数列②-2n(n≥1)(n≥2)
对于数列③(n≥1)(n≥2)
共同特点:从第2项起,第一项与它的前一项的差都等于同一个常数。
师:也就是说,这些数列均具有相邻两项之差“相等”的特点。具有这种特点的数列,我们把它叫做等差数。
一、定义:
等差数列:一般地,假如一个数列从第2项起,每一项与空的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。
如:上述3个数列都是等差数列,它们的公差依次是1,-2。
二、等差数列的通项公式
师:等差数列定义是由一数列相邻两项之间关系而得。若一等差数列的首项是,公差是d,则据其定义可得:
若将这n-1个等式相加,则可得:
即:即:即:……
由此可得:师:看来,若已知一数列为等差数列,则只要知其首项和公差d,便可求得其通项。
如数列①(1≤n≤6)
数列②:(n≥1)
数列③:(n≥1)
由上述关系还可得:即:则:=如:
三、例题讲解
例1:(1)求等差数列8,5,2…的第20项
(2)-401是不是等差数列-5,-9,-13…的项?假如是,是第几项?
解:(1)由n=20,得(2)由得数列通项公式为:由题意可知,本题是要回答是否存在正整数n,使得-401=-5-4(n-1)成立解之得n=100,即-401是这个数列的第100项。
(Ⅲ)课堂练习
生:(口答)课本P118练习3
(书面练习)课本P117练习1
师:组织同学自评练习(同桌争论)
(Ⅳ)课时小结
师:本节主要内容为:
①等差数列定义。
即(n≥2)
②等差数列通项公式(n≥1)
推导出公式:
(V)课后作业
一、课本P118习题3.21,2
二、1、预习内容:课本P116例2P117例4
2、预习提纲:
①如何应用等差数列的定义及通项公式解决一些相关问题?
②等差数列有哪些性质?
2023高考数学教案(篇3)
1、集合与函数概念实习作业
一、教学内容分析
《一般高中课程标准试验教科书·数学(1)》(人教A版)第44页。——《实习作业》。本节课程体现数学文化的特色,同学通过了解函数的进展历史进一步感受数学的魅力。同学在自己动手收集、整理资料信息的过程中,对函数的概念有更深刻的理解;感受新的学习方式带给他们的学习数学的乐趣。
二、同学学习状况分析
该内容在《一般高中课程标准试验教科书·数学(1)》(人教A版)第44页。同学第一次完成《实习作业》,乐观性高,有热忱和新奇感,但缺乏阅历,所以需要老师细心设计,做好预备工作,充分体现老师的“导演”角色。特殊在分组时留意同学的合理搭配(成果的好坏、家庭有无电脑、男女生比例、口头表达力量等),选题时,各组之间尽量不要重复,尽量多地选不同的题目,可以让全部的同学在学习共享的过程中受到更多的数学文化的熏陶。
三、设计思想
《标准》强调数学文化的重要作用,体现数学的文化的价值。数学教育不仅应当关心同学学习和把握数学学问和技能,还应当有助于同学了解数学的价值。让同学逐步了解数学的思想方法、理性精神,体会数学家的创新精神,以及数学文明的深刻内涵。
四、教学目标
1、了解函数概念的形成、进展的历史以及在这个过程中起重大作用的历史大事和人物;
2、体验合作学习的方式,通过合作学习品尝共享获得学问的欢乐;
3、在合作形式的小组学习活动中培育同学的领导意识、社会实践技能和民主价值观。
五、教学重点和难点
重点:了解函数在数学中的核心地位,以及在生活里的广泛应用;
难点:培育同学合作沟通的力量以及收集和处理信息的力量。
六、教学过程设计
【课堂预备】
1、分组:4~6人为一个实习小组,确定一人为组长。老师需要做好协调工作,确保每位同学都参与。
2、选题:依据个人爱好初步确定实习作业的题目。老师应当到各组中去了解选题状况,尽量多地选择不同的题目。
2023高考数学教案(篇4)
教学目标:
1、理解并把握曲线在某一点处的切线的概念;
2、理解并把握曲线在一点处的切线的斜率的定义以及切线方程的求法;
3、理解切线概念实际背景,培育同学解决实际问题的力量和培育同学转化
问题的力量及数形结合思想。
教学重点:
理解并把握曲线在一点处的切线的斜率的定义以及切线方程的求法。
教学难点:
用“无限靠近”、“局部以直代曲”的思想理解某一点处切线的斜率。
教学过程:
一、问题情境
1、问题情境。
如何精确地刻画曲线上某一点处的变化趋势呢?
假如将点P四周的曲线放大,那么就会发觉,曲线在点P四周看上去有点像是直线。
假如将点P四周的曲线再放大,那么就会发觉,曲线在点P四周看上去几乎成了直线。事实上,假如连续放大,那么曲线在点P四周将靠近一条确定的直线,该直线是经过点P的全部直线中最靠近曲线的一条直线。
因此,在点P四周我们可以用这条直线来代替曲线,也就是说,点P四周,曲线可以看出直线(即在很小的范围内以直代曲)。
2、探究活动。
如图所示,直线l1,l2为经过曲线上一点P的两条直线,
(1)试推断哪一条直线在点P四周更加靠近曲线;
(2)在点P四周能作出一条比l1,l2更加靠近曲线的直线l3吗?
(3)在点P四周能作出一条比l1,l2,l3更加靠近曲线的直线吗?
二、建构数学
切线定义:如图,设Q为曲线C上不同于P的一点,直线PQ称为曲线的割线。随着点Q沿曲线C向点P运动,割线PQ在点P四周靠近曲线C,当点Q无限靠近点P时,直线PQ最终就成为经过点P处最靠近曲线的直线l,这条直线l也称为曲线在点P处的切线。这种方法叫割线靠近切线。
思索:如上图,P为已知曲线C上的一点,如何求出点P处的切线方程?
三、数学运用
例1试求在点(2,4)处的切线斜率。
解法一分析:设P(2,4),Q(xQ,f(xQ)),
则割线PQ的斜率为:
当Q沿曲线靠近点P时,割线PQ靠近点P处的切线,从而割线斜率靠近切线斜率;
当Q点横坐标无限趋近于P点横坐标时,即xQ无限趋近于2时,kPQ无限趋近于常数4。
从而曲线f(x)=x2在点(2,4)处的切线斜率为4。
解法二设P(2,4),Q(xQ,xQ2),则割线PQ的斜率为:
当?x无限趋近于0时,kPQ无限趋近于常数4,从而曲线f(x)=x2,在点(2,4)处的切线斜率为4。
练习试求在x=1处的切线斜率。
解:设P(1,2),Q(1+Δx,(1+Δx)2+1),则割线PQ的斜率为:
当?x无限趋近于0时,kPQ无限趋近于常数2,从而曲线f(x)=x2+1在x=1处的切线斜率为2。
小结求曲线上一点处的切线斜率的一般步骤:
(1)找到定点P的坐标,设出动点Q的坐标;
(2)求出割线PQ的斜率;
(3)当时,割线靠近切线,那么割线斜率靠近切线斜率。
思索如上图,P为已知曲线C上的一点,如何求出点P处的切线方程?
解设
所以,当无限趋近于0时,无限趋近于点处的切线的斜率。
变式训练
1。已知,求曲线在处的切线斜率和切线方程;
2。已知,求曲线在处的切线斜率和切线方程;
3。已知,求曲线在处的切线斜率和切线方程。
课堂练习
已知,求曲线在处的切线斜率和切线方程。
四、回顾小结
1、曲线上一点P处的切线是过点P的全部直线中最接近P点四周曲线的直线,则P点处的变化趋势可以由该点处的切线反映(局部以直代曲)。
2、依据定义,利用割线靠近切线的方法,可以求出曲线在一点处的切线斜率和方程。
五、课外作业
2023高考数学教案(篇5)
教学目标:
1。通过生活中优化问题的学习,体会导数在解决实际问题中的作用,促进
同学全面熟悉数学的科学价值、应用价值和文化价值。
2。通过实际问题的讨论,促进同学分析问题、解决问题以及数学建模力量的提高。
教学重点:
如何建立实际问题的目标函数是教学的重点与难点。
教学过程:
一、问题情境
问题1把长为60cm的铁丝围成矩形,长宽各为多少时面积最大?
问题2把长为100cm的铁丝分成两段,各围成正方形,怎样分法,能使两个正方形面积之各最小?
问题3做一个容积为256L的方底无盖水箱,它的高为多少时材料最省?
二、新课引入
导数在实际生活中有着广泛的应用,利用导数求最值的方法,可以求出实际生活中的某些最值问题。
1。几何方面的应用(面积和体积等的最值)。
2。物理方面的应用(功和功率等最值)。
3。经济学方面的应用(利润方面最值)。
三、学问建构
例1在边长为60cm的正方形铁片的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底的边长是多少时,箱底的容积最大?最大容积是多少?
说明1解应用题一般有四个要点步骤:设——列——解——答。
说明2用导数法求函数的最值,与求函数极值方法类似,加一步与几个极
值及端点值比较即可。
例2圆柱形金属饮料罐的容积肯定时,它的高与底与半径应怎样选取,才
能使所用的材料最省?
变式当圆柱形金属饮料罐的表面积为定值S时,它的高与底面半径应怎样选取,才能使所用材料最省?
说明1这种在定义域内仅有一个极值的函数称单峰函数。
说明2用导数法求单峰函数最值,可以对一般的求法加以简化,其步骤为:
S1列:列出函数关系式。
S2求:求函数的导数。
S3述:说明函数在定义域内仅有一个极大(小)值,从而断定为函数的最大(小)值,必要时作答。
例3在如图所示的电路中,已知电源的内阻为,电动势为。外电阻为
多大时,才能使电功率最大?最大电功率是多少?
说明求最值要留意验证等号成立的条件,也就是说取得这样的值时对应的自变量必需有解。
例4强度分别为a,b的两个光源A,B,它们间的距离为d,试问:在连接这两个光源的线段AB上,何处照度最小?试就a=8,b=1,d=3时回答上述问题(照度与光的强度成正比,与光源的距离的平方成反比)。
例5在经济学中,生产单位产品的成本称为成本函数,记为;出售单位产品的收益称为收益函数,记为;称为利润函数,记为。
(1)设,生产多少单位产品时,边际成本最低?
(2)设,产品的单价,怎样的定价可使利润最大?
四、课堂练习
1。将正数a分成两部分,使其立方和为最小,这两部分应分成____和___。
2。在半径为R的圆内,作内接等腰三角形,当底边上高为时,它的面积最大。
3。有一边长分别为8与5的长方形,在各角剪去相同的小正方形,把四边折起做成一个无盖小盒,要使纸盒的容积最大,问剪去的小正方形边长应为多少?
4。一条水渠,断面为等腰梯形,如图所示,在确定断面尺寸时,盼望在断面ABCD的面积为定值S时,使得湿周l=AB+BC+CD最小,这样可使水流阻力小,渗透少,求此时的高h和下底边长b。
五、回顾反思
(1)解有关函数最大值、最小值的实际问题,需要分析问题中各个变量之间的关系,找出适当的函数关系式,并确定函数的定义区间;所得结果要符合问题的实际意义。
(2)依据问题的实际意义来推断函数最值时,假如函数在此区间上只有一个极值点,那么这个极值就是所求最值,不必再与端点值比较。
(3)相当多有关最值的实际问题用导数方法解决较简洁。
六、课外作业
课本第38页第1,2,3,4题。
2023高考数学教案(篇6)
高中数学趣味竞赛题(共10题)
1、撒谎的有几人
5个高中生有,她们面对学校的新闻采访说了如下的话:
爱:“我还没有谈过恋爱。”静香:“爱撒谎了。”
玛丽:“我曾经去过昆明。”惠美:“玛丽在撒谎。”
千叶子:“玛丽和惠美都在撒谎。”那么,这5个人之中究竟有几个人在撒谎呢?
2、她们究竟是谁
有天使、恶魔、人三者,天使时刻都说真话,恶魔时时刻刻都说假话,人呢,有时候说真话,有时候说假话。
穿黑色衣服的女子说:“我不是天使。”穿蓝色衣服的女子说:“我不是人。”穿白色衣服的女子说:“我不是恶魔。”那么,这三人究竟分别是谁呢?
3、半只小猫
听说祖父家的波斯猫生了好多小猫,喜爱猫的我兴高采烈地来到祖父家。可是,只剩下1只小猫了。
“一共生了几只小猫呀?”“猜猜看,要是猜中了,就把剩下的这只小猫给你。四周的宠物店听说以后,立刻来买走了全部小猫的一半和半只。”“半只?”“是啊,然后,邻居家的老奶奶无论如何都要,所以就把剩下的一半和另外半只给了她。这就是只剩下1只小猫的缘由。那么你想想看,一共生了几只小猫呢?
4、被虫子吃掉的算式
一只爱吃墨水的虫子把下图的算式中的数字全部吃掉了。当然,没有数字的部分它没有吃(由于没有墨水)。
那么,请问原来的算式是什么样子的呢?
5、巧动火柴
用16根火柴摆成5个正方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 七下地理湘教版知识课件
- 《声与振动基础》课件
- 糖尿病合并乙肝的护理
- 下五英语教育课件
- 《SILVACO工艺仿真》课件
- 数量性遗传课件
- 御茶水女子大学
- 校徽北京师范大学
- 新版人教版七年级上册英语单词表(含音标)
- 湖北汽车工业学院科技学院《管理学概论》2021-2022学年第一学期期末试卷
- 《网络系统管理与维护》期末练习题
- 走进歌剧世界智慧树知到期末考试答案章节答案2024年北京航空航天大学
- DL-T 5148-2021水工建筑物水泥灌浆施工技术条件-PDF解密
- 浙江省杭州市重点学校2023-2024学年八年级上学期期中考试语文试题(含答案)
- 《义务教育英语课程标准(2022年版)》测试题10套含答案
- 校园健康素养知识讲座
- 《古代文化常识》课件
- 电子信息工程中的微波通信技术
- 家长学校家长如何培养孩子良好的学习习惯 新课件
- csgo比赛策划方案
- 树立正确的就业观剖析课件
评论
0/150
提交评论