吉林省长春市第一五一中学2022-2023学年高二数学第二学期期末联考试题含解析_第1页
吉林省长春市第一五一中学2022-2023学年高二数学第二学期期末联考试题含解析_第2页
吉林省长春市第一五一中学2022-2023学年高二数学第二学期期末联考试题含解析_第3页
吉林省长春市第一五一中学2022-2023学年高二数学第二学期期末联考试题含解析_第4页
吉林省长春市第一五一中学2022-2023学年高二数学第二学期期末联考试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的定义域为,导函数在内的图象如图所示.则函数在内有几个极小值点()A.1 B.2 C.3 D.42.某快递公司的四个快递点呈环形分布(如图所示),每个快递点均已配备快递车辆10辆.因业务发展需要,需将四个快递点的快递车辆分别调整为5,7,14,14辆,要求调整只能在相邻的两个快递点间进行,且每次只能调整1辆快递车辆,则A.最少需要8次调整,相应的可行方案有1种B.最少需要8次调整,相应的可行方案有2种C.最少需要9次调整,相应的可行方案有1种D.最少需要9次调整,相应的可行方案有2种3.甲、乙、丙、丁四位同学各自对、两变量的线性相关性做试验,并用回归分析方法分别求得相关系数与残差平方和如表:甲乙丙丁0.820.780.690.85106115124103则哪位同学的试验结果体现、两变量有更强的线性相关性()A.甲 B.乙 C.丙 D.丁4.变量与相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);变量与相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1).表示变量之间的线性相关系数,表示变量与之间的线性相关系数,则()A. B. C. D.5.如图所示,在边长为1的正方形OABC中任取一点P,则点P恰好取自阴影部分的概率为A. B. C. D.6.下列说法正确的是()A.命题“”的否定是“”B.命题“已知,若则或”是真命题C.命题“若则函数只有一个零点”的逆命题为真命题D.“在上恒成立”在上恒成立7.设复数满足,则()A. B.C. D.28.已知双曲线,若其过一、三象限的渐近线的倾斜角,则双曲线的离心率的取值范围是()A. B. C. D.9.小赵、小钱、小孙、小李到4个景点旅游,每人只去一个景点,设事件A为“4个人去的景点不相同”,事件B为“小赵独自去一个景点”,则P(A|B)=()A. B.C. D.10.函数的极值点所在的区间为()A. B. C. D.11.函数的极值情况是().A.有极大值,极小值2 B.有极大值1,极小值C.无极大值,但有极小值 D.有极大值2,无极小值12.已知曲线与直线围成的图形的面积为,则()A.1 B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图所示,在棱长为2的正方体中,,分别是,的中点,那么异面直线和所成角的余弦值等于________________.14.设是定义在上的周期为2的函数,当时,则__________.15.若某一射手射击所得环数的分布列如下:456789100.020.040.060.090.280.290.22则此射手“射击一次命中环数”的概率是_________.16.设某同学选择等级考科目时,选择物理科目的概率为0.5,选择化学科目的概率为0.6,且这两个科目的选择相互独立,则该同学在这两个科目中至少选择一个的概率是________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某大学“统计初步”课程的教师随机调查了选该课程的一些学生的情况,具体数据如下表:非统计专业统计专业合计男8436120女324880合计11684200(1)能否在犯错误的概率不超过0.005的前提下认为“修统计专业与性别有关系”?(2)用分层抽样方法在上述80名女生中按照“非统计专业”与“统计专业”随机抽取10名,再从抽到的这10名女生中抽取2人,记抽到“统计专业”的人数为,求随机变量的分布列和数学期望.参考公式:,其中;临界值表:0.1500.1000.0500.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82818.(12分)如图,在四棱锥中,底面为菱形,,,为线段的中点,为线段上的一点.(1)证明:平面平面.(2)若,二面角的余弦值为,求与平面所成角的正弦值.19.(12分)已知,函数.(1)当时,解不等式;(2)若关于的方程的解集中恰有一个元素,求的取值范围;(3)设,若对任意,函数在区间上的最大值与最小值的差不超过1,求的取值范围.20.(12分)已知函数(1)当时,求曲线在点处的切线方程;(2)讨论函数的单调性.21.(12分)已知,其前项和为.(1)计算;(2)猜想的表达式,并用数学归纳法进行证明.22.(10分)已知函数,;.(1)求的最大值;(2)若对,总存在使得成立,求的取值范围;(3)证明不等式.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

直接利用极小值点两侧函数的单调性是先减后增,对应导函数值是先负后正,再结合图像即可得出结论.【详解】因为极小值点两侧函数的单调性是先减后增,对应导函数值是先负后正,由图得:导函数值先负后正的点只有一个,故函数在内极小值点的个数是1.故选:A【点睛】本题考查了极小值点的概念,需熟记极小值点的定义,属于基础题.2、D【解析】

先阅读题意,再结合简单的合情推理即可得解.【详解】(1)A→D调5辆,D→C调1辆,B→C调3辆,共调整:5+1+3=9次,(2)A→D调4辆,A→B调1辆,B→C调4辆,共调整:4+1+4=9次,故选:D【点睛】本题考查了阅读能力及简单的合情推理,属中档题.3、D【解析】试题分析:由题表格;相关系数越大,则相关性越强.而残差越大,则相关性越小.可得甲、乙、丙、丁四位同学,中丁的线性相关性最强.考点:线性相关关系的判断.4、C【解析】

求出,,进行比较即可得到结果【详解】变量与相对应的一组数据为即变量与相对应的一组数据为这一组数据的相关系数则第一组数据的相关系数大于,第二组数据的相关系数小于则故选【点睛】本题主要考查的是变量的相关性,属于基础题.5、C【解析】试题分析:由三角形面积为,,所以阴影部分面积为,所求概率为考点:定积分及几何概型概率6、B【解析】

A.注意修改量词并否定结论,由此判断真假;B.写出逆否命题并判断真假,根据互为逆否命题同真假进行判断;C.写出逆命题,并分析真假,由此进行判断;D.根据对恒成立问题的理解,由此判断真假.【详解】A.“”的否定为“”,故错误;B.原命题的逆否命题为“若且,则”,是真命题,所以原命题是真命题,故正确;C.原命题的逆命题为“若函数只有一个零点,则”,因为时,,此时也仅有一个零点,所以逆命题是假命题,故错误;D.“在上恒成立”“在上恒成立”,故错误.故选:B.【点睛】本题考查命题真假的判断,涉及到函数零点、含一个量词的命题的真假判断、不等式恒成立问题的理解等内容,难度一般.注意互为逆否命题的两个命题真假性相同.7、A【解析】由,得,故选A.8、B【解析】分析:利用过一、三象限的渐近线的倾斜角θ∈[,],可得1≤≤,即可求出双曲线的离心率e的取值范围.详解:双曲线=1(a>0,b>0)的一条渐近线方程为y=x,由过一、三象限的渐近线的倾斜角θ∈[,],∴tan≤≤tan,∴1≤≤,∴1≤≤3,∴2≤1+≤4,即2≤e2≤4,解得≤e≤2,故选:B.点睛:求离心率的常用方法有以下两种:(1)求得的值,直接代入公式求解;(2)列出关于的齐次方程(或不等式),然后根据,消去后转化成关于的方程(或不等式)求解.9、A【解析】

这是求小赵独自去一个景点的前提下,4

个人去的景点不相同的概率,求出相应基本事件的个数,按照公式计算,即可得出结论.【详解】小赵独自去一个景点共有4×3×3×3=108种情况,即n(B)=108,4个人去的景点不同的情况有种,即n(AB)=24,.故选:A【点睛】本题考查条件概率,考查学生的计算能力,确定基本事件的个数是关键.10、A【解析】

求出导函数,然后运用函数零点存在性定理进行验证可得所求区间.【详解】∵,∴,且函数单调递增.又,∴函数在区间内存在唯一的零点,即函数的极值点在区间内.故选A.【点睛】本题考查函数零点存在性定理的应用,解答本题时要弄清函数的极值点即为导函数的零点,同时还应注意只有在导函数零点左右两侧的函数值变号时,该零点才为极值点,否则导函数的零点就不是极值点.11、A【解析】

求导分析函数导数的零点,进而求得原函数的单调性再判断即可.【详解】由题,函数定义域为,,令有.故在上单调递增,在上单调递减.在上单调递减,在上单调递增.且当时,;当时,故有极大值,极小值2.故选:A【点睛】本题主要考查了函数极值的求解,需要求导分析单调性.同时注意函数在和上分别单调递减.属于基础题.12、D【解析】分析:首先求得交点坐标,然后结合微积分基本定理整理计算即可求得最终结果.详解:联立方程:可得:,,即交点坐标为,,当时,由定积分的几何意义可知围成的图形的面积为:,整理可得:,则,同理,当时计算可得:.本题选择D选项.点睛:(1)一定要注意重视定积分性质在求值中的应用;(2)区别定积分与曲边梯形面积间的关系,定积分可正、可负、也可以为0,是曲边梯形面积的代数和,但曲边梯形面积非负.二、填空题:本题共4小题,每小题5分,共20分。13、.【解析】以AD,DC,DD1建立空间直角坐标系,则:得直线和所成角的余弦值等于14、【解析】试题分析:考点:1.函数的性质;2.周期函数.15、【解析】因,故应填答案。16、0.8【解析】

根据相互独立事件概率的计算公式,及对立事件的概率求法,即可求解.【详解】因为选择物理科目的概率为0.5,选择化学科目的概率为0.6,所以既不选择物理也不选择化学的概率为所以由对立事件的性质可知至少选择一个科目的概率为故答案为:【点睛】本题考查了独立事件的概率求法,对立事件的性质应用,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)能在犯错误的概率不超过0.005的前提下认为“修统计专业与性别有关系”.详见解析(2)见解析【解析】

(1)根据公式计算,与临界值表作比较得到答案.(2)根据分层抽样计算“非统计专业”与“统计专业”人数,计算各种情况的概率,列出分布列,求数学期望.【详解】解:(1)根据表中数据,计算,因为所以能在犯错误的概率不超过0.005的前提下认为“修统计专业与性别有关系”.(2)用分层抽样方法在上述80名女生中按照“非统计专业”与“统计专业”随机抽取10名,那么抽到“非统计专业”4名,抽到“统计专业”6名.,,所以的分布列为012【点睛】本题考查了列联表,分布列,分层抽样,数学期望,属于常考题型.18、(1)见解析;(2)【解析】

(1)由得平面PAE,进而可得证;(2)先证得平面,设,以为坐标原点,的方向为轴正方向,建立空间直角坐标系,分别计算平面的法向量为和,设与平面所成角为,则,代入计算即可得解.【详解】(1)证明:连接,因为,为线段的中点,所以.又,,所以为等边三角形,.因为,所以平面,又平面,所以平面平面.(2)解:设,则,因为,所以,同理可证,所以平面.如图,设,以为坐标原点,的方向为轴正方向,建立空间直角坐标系.易知为二面角的平面角,所以,从而.由,得.又由,,知,.设平面的法向量为,由,,得,不妨设,得.又,,所以.设与平面所成角为,则.所以与平面所成角的正弦值为.【点睛】用向量法求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.19、(1).(2).(3).【解析】

试题分析:(1)当时,解对数不等式即可;(2)根据对数的运算法则进行化简,转化为一元二次方程,讨论的取值范围进行求解即可;(3)根据条件得到,恒成立,利用换元法进行转化,结合对勾函数的单调性进行求解即可.试题解析:(1)由,得,解得.(2)由f(x)﹣log2[(a﹣3)x+2a﹣5]=1得log2(a)﹣log2[(a﹣3)x+2a﹣5]=1.即log2(a)=log2[(a﹣3)x+2a﹣5],即a=(a﹣3)x+2a﹣5>1,①则(a﹣3)x2+(a﹣5)x﹣1=1,即(x+1)[(a﹣3)x﹣1]=1,②,当a=3时,方程②的解为x=﹣1,代入①,成立当a=3时,方程②的解为x=﹣1,代入①,成立当a≠3且a≠3时,方程②的解为x=﹣1或x,若x=﹣1是方程①的解,则a=a﹣1>1,即a>1,若x是方程①的解,则a=2a﹣3>1,即a>2,则要使方程①有且仅有一个解,则1<a≤2.综上,若方程f(x)﹣log2[(a﹣3)x+2a﹣5]=1的解集中恰好有一个元素,则a的取值范围是1<a≤2,或a=3或a=3.(3)函数f(x)在区间[t,t+1]上单调递减,由题意得f(t)﹣f(t+1)≤1,即log2(a)﹣log2(a)≤1,即a≤2(a),即a设1﹣t=r,则1≤r,,当r=1时,1,当1<r时,,∵y=r在(1,)上递减,∴r,∴,∴实数a的取值范围是a.【一题多解】(3)还可采用:当时,,,所以在上单调递减.则函数在区间上的最大值与最小值分别为,.即,对任意成立.因为,所以函数在区间上单调递增,时,有最小值,由,得.故的取值范围为.20、(1).(2)时,递减区间为;当时,在递减,在递增.【解析】

(1)求导数,利用导数的几何意义求曲线f(x)在点(1,f(1))处的切线方程;(2)先求出函数的导数,通过讨论a的取值范围求出函数的单调区间.【详解】(1)当时,函数,,∴,,∴曲线在点处的切线方程为(2).当时,,的单调递减区间为;当时,在递减,在递增【点睛】本题考查利用导数研究切线方程、函数的单调性,考查学生分析解决问题的能力,是一道基础题.21、(1);(2),证明见解析.【解析】

(1)由题可得前4项,依次求和即可得到答案;(2)由(1)得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论