湖北省武汉第二中学2022-2023学年数学高二下期末联考模拟试题含解析_第1页
湖北省武汉第二中学2022-2023学年数学高二下期末联考模拟试题含解析_第2页
湖北省武汉第二中学2022-2023学年数学高二下期末联考模拟试题含解析_第3页
湖北省武汉第二中学2022-2023学年数学高二下期末联考模拟试题含解析_第4页
湖北省武汉第二中学2022-2023学年数学高二下期末联考模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若,则为()A.-233 B.10 C.20 D.2332.若双曲线的一条渐近线为,则实数()A. B.2 C.4 D.3.设函数,则“”是“有4个不同的实数根”的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件4.设奇函数的最小正周期为,则()A.在上单调递减 B.在上单调递减C.在上单调递增 D.在上单调递增5.已知…,依此规律,若,则的值分别是()A.48,7 B.61,7 C.63,8 D.65,86.在中,为锐角,,则的形状为()A.直角三角形 B.等腰三角形 C.等腰直角三角形 D.以上都不对7.甲、乙两名运动员,在某项测试中的8次成绩如茎叶图所示,分别表示甲、乙两名运动员这项测试成绩的平均数,,分别表示甲、乙两名运动员这项测试成绩的标准差,则有()A. B.C. D.8.不相等的三个正数a、b、c成等差数列,并且x是a、b的等比中项,y是b、c的等比中项,则x2、b2、y2三数()A.成等比数列而非等差数列B.成等差数列而非等比数列C.既成等差数列又成等比数列D.既非等差数列又非等比数列9.已知集合,集合,则A. B. C. D.10.设M为曲线C:y=2x2+3x+3上的点,且曲线C在点M处切线倾斜角的取值范围为3πA.[-1,+∞) B.-∞,-34 C.-1,-11.五个人站成一排,其中甲乙相邻的站法有()A.18种 B.24种 C.48种 D.36种12.已知结论:“在正三角形中,若是边的中点,是三角形的重心,则.”若把该结论推广到空间,则有结论:在棱长都相等的四面体中,若的中心为,四面体内部一点到四面体各面的距离都相等,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.有9本不相同的教科书排成一排放在书架上,其中数学书4本,外语书3本,物理书2本,如果同一学科的书要排在一起,那么有________种不同的排法(填写数值).14.已知函数,则_________15.若随机变量,且,则_______.16.已知向量与共线且方向相同,则_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)中央政府为了应对因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”.为了解人们]对“延迟退休年龄政策”的态度,责成人社部进行调研.人社部从网上年龄在1565岁的人群中随机调查100人,调査数据的频率分布直方图和支持“延迟退休”的人数与年龄的统计结果如下:年龄支持“延迟退休”的人数155152817(1)由以上统计数据填列联表,并判断能否在犯错误的概率不超过0.05的前提下认为以45岁为分界点的不同人群对“延迟退休年龄政策”的支持度有差异;45岁以下45岁以上总计支持不支持总计(2)若以45岁为分界点,从不支持“延迟退休”的人中按分层抽样的方法抽取8人参加某项活动.现从这8人中随机抽2人①抽到1人是45岁以下时,求抽到的另一人是45岁以上的概率.②记抽到45岁以上的人数为,求随机变量的分布列及数学期望.18.(12分)在直角坐标系xOy中,已知倾斜角为α的直线l过点A(2,1).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系曲线C的极坐标方程为ρ=2sinθ,直线l与曲线C分别交于P,Q两点.(1)写出直线l的参数方程和曲线C的直角坐标方程.(2)求|AP|•|AQ|的值.19.(12分)已知函数.(1)函数在区间上有两个不同的零点,求实数的取值范围;(2)若连续掷两次骰子(骰子六个表面上标注点数分别为1、2、3、4、5、6),得到点数分别为和,记事件在恒成立},求事件发生的概率.20.(12分)用函数单调性的定义证明:函数在是减函数.21.(12分)如图,四棱锥中,为正三角形,为正方形,平面平面,、分别为、中点.(1)证明:平面;(2)求直线与平面所成角的正弦值.22.(10分)已知是同一平面内的三个向量,;(1)若,且,求的坐标;(2)若,且与垂直,求与的夹角.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

对等式两边进行求导,当x=1时,求出a1+2a2+3a3+4a4+5a5的值,再求出a0的值,即可得出答案.【详解】对等式两边进行求导,得:2×5(2x﹣3)4=a1+2a2x+3a3x2+4a4x3+5a5x4,令x=1,得10=a1+2a2+3a3+4a4+5a5;又a0=(﹣3)5=﹣243,∴a0+a1+2a2+3a3+4a4+5a5=﹣243+10=﹣1.故选A.【点睛】本题考查了二项式定理与导数的综合应用问题,考查了赋值法求解二项展开式的系数和的方法,利用导数得出式子a1+2a2+3a3+4a4+5a5是解题的关键.2、C【解析】

根据双曲线的标准方程求出渐近线方程,根据双曲线的一条渐近线求得m的值.【详解】双曲线中,,令,得,所以;又双曲线的一条渐近线为,则,解得,所以实数.故选:C.【点睛】本题考查了利用双曲线的标准方程求渐近线方程的应用问题,是基础题.3、B【解析】分析:利用函数的奇偶性将有四个不同的实数根,转化为时,有两个零点,利用导数研究函数的单调性,结合图象可得,从而可得结果.详解:是偶函数,有四个不同根,等价于时,有两个零点,时,,,时,恒成立,递增,只有一个零点,不合题意,时,令,得在上递增;令,得在上递减,时,有两个零点,,,得,等价于有四个零点,“”是“有4个不同的实数根”的必要不充分条件,故选B.点睛:本题考查函数的单调性、奇偶性以及函数与方程思想的应用,所以中档题.函数的性质问题以及函数零点问题是高考的高频考点,考生需要对初高中阶段学习的十几种初等函数的单调性、奇偶性、周期性以及对称性非常熟悉;另外,函数零点的几种等价形式:函数的零点函数在轴的交点方程的根函数与的交点.4、B【解析】分析:利用辅助角公式将函数进行化简,根号函数的周期和奇偶性即可得到结论.详解:,

∵函数的周期是,,

∵)是奇函数,

即∴当时,即则在单调递减,

故选:B.点睛:本题主要考查三角函数的解析式的求解以及三角函数的图象和性质,利用辅助角公式是解决本题的关键.5、C【解析】

仔细观察已知等式的数字可发现:,根据此规律解题即可.【详解】由,

,

,

归纳可得,故当时,,

故选C.【点睛】本题通过观察几组等式,归纳出一般规律来考查归纳推理,属于中档题.归纳推理的一般步骤:一、通过观察个别情况发现某些相同的性质.二、从已知的相同性质中推出一个明确表述的一般性命题(猜想).6、A【解析】分析:由正弦定理化简并结合选项即可得到答案.详解:,则由正弦定理可得:,即,则当时,符合题意,故选:A.点睛:(1)三角形的形状按边分类主要有:等腰三角形,等边三角形等;按角分类主要有:直角三角形,锐角三角形,钝角三角形等.判断三角形的形状,应围绕三角形的边角关系进行思考,主要看其是不是正三角形、等腰三角形、直角三角形、钝角三角形或锐角三角形,要特别注意“等腰直角三角形”与“等腰三角形或直角三角形”的区别.(2)边角转化的工具主要是正弦定理和余弦定理.7、B【解析】

根据茎叶图看出两组数据,先求出两组数据的平均数,再求出两组数据的方差,比较两组数据的方差的大小就可以得到两组数据的标准差的大小.【详解】由茎叶图可看出甲的平均数是,乙的平均数是,两组数据的平均数相等.甲的方差是乙的方差是甲的标准差小于乙的标准差,故选B.【点睛】本题考查两组数据的平均数和方差的意义,是一个基础题,解题时注意平均数是反映数据的平均水平,而标准差反映波动的大小,波动越小数据越稳定.8、B【解析】由已知条件,可得由②③得代入①,得=2b,即x2+y2=2b2.故x2、b2、y2成等差数列,故选B.9、D【解析】,,则,选D.10、D【解析】

求出导函数y',倾斜角的范围可转化为斜率的范围,斜率就是导数值,由可得y'的不等式,解之可得.【详解】由题意y'=4x+3,切线倾斜角的范围是[3π4,π),则切线的斜率k∴-1≤4x+3<0,解得-1≤x<-3故选D.【点睛】本题考查导数的几何意义:函数在某一点处的导数就是其图象在该点处的切线的斜率.解题时要注意直线倾斜角与直线斜率之间的关系,特别是正切函数的性质.11、C【解析】

将甲乙看作一个大的元素与其他元素进行排列,再乘即可得出结论.【详解】五个人站成一排,其中甲乙相邻,将甲乙看作一个大的元素与其他3人进行排列,再考虑甲乙顺序为,故共种站法.故选:C.【点睛】本题考查排列组合的应用,求排列组合常用的方法有:元素优先法、插空法、捆绑法、隔板法、间接法等,解决排列组合问题对学生的抽象思维能力和逻辑思维能力要求较高,本题属于简单题.12、C【解析】解:由平面图形的性质类比猜想空间几何体的性质,一般的思路是:点到线,线到面,或是二维变三维;由题目中“在正三角形ABC中,若D是边BC中点,G是三角形ABC的重心,则AG:GD=2:1”,我们可以推断:“在正四面体ABCD中,若M是底面BCD的中心,O是正四面体ABCD的中心,则AO:OM=3:1.”故答案为“在正四面体ABCD中,若M是底面BCD的中心,O是正四面体ABCD的中心,则AO:OM=3:1.”二、填空题:本题共4小题,每小题5分,共20分。13、1728【解析】

根据题意,将同学科的书捆绑,由排列的概念,即可得出结果.【详解】因为一共有数学书4本,外语书3本,物理书2本,同一学科的书要排在一起,则有种不同的排法.故答案为:【点睛】本题主要考查排列的应用,利用捆绑法即可求解,属于常考题型.14、3【解析】

判断,再代入,利用对数恒等式,计算求得式子的值为.【详解】因为,所以,故填.【点睛】在计算的值时,先进行幂运算,再进行对数运算,能使运算过程更清晰.15、【解析】

由,得,两个式子相加,根据正态分布的对称性和概率和为1即可得到答案.【详解】由随机变量,且,根据正态分布的对称性得且正态分布的概率和为1,得.故答案为0.15【点睛】本题考查了正态分布曲线的特点及曲线所表示的意义,属于基础题.16、3【解析】

先根据向量平行,得到,计算出t的值,再检验方向是否相同.【详解】因为向量与共线且方向相同所以得.解得或.当时,,不满足条件;当时,,与方向相同,故.【点睛】本题考查两向量平行的坐标表示,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)列联表见解析,在犯错误的概率不超过0.05的前提下认为以45岁为分界点的不同人群对“延迟退休年龄政策”有差异.(2)①.②分布列见解析,.【解析】

分析:(1)根据频率分布直方图得到45岁以下与45岁以上的人数,由此可得列联表,求得后在结合临界值表可得结论.(2)①结合条件概率的计算方法求解;②由题意可得的可能取值为0,1,2,分别求出对应的概率后可得分布列和期望.详解:(1)由频率分布直方图知45岁以下与45岁以上各50人,故可得列联表如下:45岁以下45岁以上总计支持354580不支持15520总计5050100由列联表可得,所以在犯错误的概率不超过0.05的前提下认为以45岁为分界点的不同人群对“延迟退休年龄政策”的支持度有差异.(2)①从不支持“延迟退休”的人中抽取8人,则45岁以下的应抽6人,45岁以上的应抽2人.设“抽到1人是45岁以下”为事件A,“抽到的另一人是45岁以上”为事件B,则,∴,即抽到1人是45岁以下时,求抽到的另一人是45岁以上的概率为.②从不支持“延迟退休”的人中抽取8人,则45岁以下的应抽6人,45岁以上的应抽2人.由题意得的可能取值为0,1,2.,,.故随机变量的分布列为:012所以.18、(1);x2+y2=2y;(2)3【解析】

(1)由直线的倾斜角与所过定点写出直线的参数方程,再利用极坐标与直角坐标的互化公式,求得曲线的直角坐标方程,即可得到答案.(2)将直线的参数方程代入曲线的方程,得到关于的一元二次方程,再由根与系数的关系,以及的几何意义,即可求解的值.【详解】(1)由题意知,倾斜角为α的直线l过点A(2,1,所以直线l的参数方程为(t为参数),因为ρ=2sinθ,所以ρ2=2ρsinθ,把y=ρsinθ,x2+y2=ρ2代入得x2+y2=2y,所以曲线C的直角坐标方程为x2+y2=2y.(2)将直线l的参数方程代入曲线C的方程,得t2+(4cosα)t+3=0,设P、Q的参数分别为t1、t2,由根与系数的关系得t1+t2=-4cosα,t1t2=3,且由Δ=(4cosα)2-4×3>0,所以|AP|·|AQ|=|t1|·|t2|=3.【点睛】本题主要考查了直线的参数方程的求解,极坐标方程与直角坐标方程的互化,以及直线的参数方程的应用,其中解答中熟记互化公式,以及直线参数方程中参数的几何意义是解答的关键,着重考查了推理与运算能力,属于基础题.19、(1)(2)【解析】

(1)函数在区间上有两个不同的零点,等价于方程有两不等正实数解,由二次方程区间根问题即可得解;(2)由不等式恒成立问题,可转化为,求出满足条件的基本事件的个数,从而求出满足条件的概率即可.【详解】解:(1)因为,由函数在区间上有两个不同的零点,则方程有两不等正实数解,由区间根问题可得,解得,即实数的取值范围为;(2)若连续掷两次骰子(骰子六个表面上标注点数分别为1、2、3、4、5、6),得到点数分别为和,计基本事件为,则基本事件的个数为,因为在恒成立,则在恒成立,即在成立,又,则,(当且仅当,即时取等号)即,满足此条件的基本事件有,共12个,由古典概型概率求法可得,事件发生的概率为,故事件发生的概率为.【点睛】本

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论