版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,则函数满足()A.最小正周期为 B.图像关于点对称C.在区间上为减函数 D.图像关于直线对称2.已知是虚数单位,,则复数的共轭复数为()A. B. C. D.3.执行如图所示的程序框图,若输入的值为,则输出的的值为()A. B. C. D.4.12名同学合影,站成前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的总数是()A. B. C. D.5.通过随机询问50名性别不同的大学生是否爱好某项运动,得到如下的列联表,由得参照附表,得到的正确结论是().爱好不爱好合计男生20525女生101525合计302050附表:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828A.有99.5%以上的把握认为“爱好该项运动与性别有关”B.有99.5%以上的把握认为“爱好该项运动与性别无关”C.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”D.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”6.某市践行“干部村村行”活动,现有3名干部甲、乙、丙可供选派,下乡到5个村蹲点指导工作,每个村至少有1名干部,每个干部至多住3个村,则干部甲住3个村的概率为()A. B. C. D.7.等差数列{an}中,a1+a5=10,a4=7,则数列{an}的公差为A.1 B.2 C.3 D.48.已知函数是奇函数,则曲线在点处的切线方程是()A. B. C. D.9.已知向量,,其中,.若,则的最大值为()A.1 B.2 C. D.10.5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有()A.10种 B.20种 C.25种 D.32种11.一个几何体的三视图如右图所示,则这个几何体的体积为()A. B. C. D.812.若3x+xn展开式二项式系数之和为32,则展开式中含xA.40 B.30 C.20 D.15二、填空题:本题共4小题,每小题5分,共20分。13.一个碗中有10个筹码,其中5个都标有2元,5个都标有5元,某人从此碗中随机抽取3个筹码,若他获得的奖金数等于所抽3个筹码的钱数之和,则他获得奖金的期望为________.14.已知棱长为的正方体中,,分别是和的中点,点到平面的距离为________________.15.下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;②设有一个回归方程,若变量增加一个单位时,则平均增加5个单位;③线性回归方程所在直线必过;④曲线上的点与该点的坐标之间具有相关关系;⑤在一个列联表中,由计算得,则其两个变量之间有关系的可能性是.其中错误的是________.16.函数,若函数恰有两个零点,则实数的取值范围是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)2020年开始,国家逐步推行全新的高考制度.新高考不再分文理科,采用3+3模式,其中语文、数学、外语三科为必考科目,满分各150分,另外考生还要依据想考取的高校及专业的要求,结合自己的兴趣爱好等因素,在思想政治、历史、地理、物理、化学、生物6门科目中自选3门参加考试(6选3),每科目满分100分.为了应对新高考,某高中从高一年级1000名学生(其中男生550人,女生450人)中,根据性别分层,采用分层抽样的方法从中抽取100名学生进行调查.(1)学校计划在高一上学期开设选修中的“物理”和“地理”两个科目,为了了解学生对这两个科目的选课情况,对抽取到的100名学生进行问卷调查(假定每名学生在这两个科目中必须选择一个科目且只能选择一个科目),如表是根据调查结果得到的列联表.请将列联表补充完整,并判断是否有的把握认为选择科目与性别有关?说明你的理由;(2)在抽取到的女生中按(1)中的选课情况进行分层抽样,从中抽出9名女生,再从这9名女生中随机抽取4人,设这4人中选择“地理”的人数为,求的分布列及数学期望.选择“物理”选择“地理”总计男生10女生25总计附参考公式及数据:,其中.0.050.013.8416.63518.(12分)已知函数,其中(Ⅰ)求的单调区间;(Ⅱ)若在上存在,使得成立,求的取值范围.19.(12分)在平面直角坐标系xOy中,直线l的参数方程为(t为参数),它与曲线C:(y-2)2-x2=1交于A、B两点.(1)求|AB|的长;(2)在以O为极点,x轴的正半轴为极轴建立极坐标系,设点P的极坐标为,求点P到线段AB中点M的距离.20.(12分)选修4-5:不等式选讲已知函数.(1)求不等式的解集;(3)若函数的最小值不小于的最小值,求的取值范围.21.(12分)在某项体能测试中,规定每名运动员必需参加且最多两次,一旦第一次测试通过则不再参加第二次测试,否则将参加第二次测试.已知甲每次通过的概率为23,乙每次通过的概率为1(Ⅰ)求甲乙至少有一人通过体能测试的概率;(Ⅱ)记X为甲乙两人参加体能测试的次数和,求X的分布列和期望.22.(10分)证明:若a>0,则.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】∵函数f(x)=cos(x+)sinx=(cosx﹣sinx)•sinx=sin2x﹣•=(sin2x+cos2x)﹣=sin(2x+)+,故它的最小正周期为,故A不正确;令x=,求得f(x)=+=,为函数f(x)的最大值,故函数f(x)的图象关于直线x=对称,且f(x)的图象不关于点(,)对称,故B不正确、D正确;在区间(0,)上,2x+∈(,),f(x)=sin(2x+)+为增函数,故C不正确,故选D.2、A【解析】
先由复数的除法,化简z,再由共轭复数的概念,即可得出结果.【详解】因为,所以.故选A【点睛】本题主要考查复数的运算,以共轭复数的概念,熟记运算法则与概念即可,属于基础题型.3、B【解析】开始运行,,满足条件,,;第二次运行,,满足条件,s=1+1=1.i=3;第三次运行,,满足条件,,;第四次运行,,满足条件,,;第五次运行,,满足条件,,;第六次运行,,满足条件,,,不满足条件,程序终止,输出,故选B.4、C【解析】试题分析:第一步从后排8人中选2人有种方法,第二步6人前排排列,先排列选出的2人有种方法,再排列其余4人只有1种方法,因此所有的方法总数的种数是考点:排列组合点评:此类题目的求解一般遵循先选择后排列,结合分步计数原理的方法5、A【解析】
对照表格,看在中哪两个数之间,用较小的那个数据说明结论.【详解】由≈8.333>7.879,参照附表可得:有99.5%以上的把握认为“爱好该项运动与性别有关”,故选:A.【点睛】本题考查独立性检验,属于基础题.6、A【解析】
先利用排列组合思想求出甲干部住个村的排法种数以及将三名可供选派的干部下乡到个村蹲点的排法种数,最后利用古典概型的概率公式求出所求事件的概率。【详解】三名干部全部选派下乡到个村蹲点,三名干部所住的村的数目可以分别是、、或、、,排法种数为,甲住个村,则乙、丙各住一个村,排法种数为,由古典概型的概率公式可知,所求事件的概率为,故选:A。【点睛】本题考查排列组合应用问题以及古典概型概率的计算,解决本题的关键在于将所有的基本事件数利用排列组合思想求出来,合理利用分类计数和分步计算原理,考查分析问题和运算求解能力,属于中等题。7、B【解析】∵a1+a5=10,a4=7,∴2a1+8、B【解析】
根据奇函数的定义或性质求出,然后可求出导函数,得切线斜率,从而得切线方程【详解】∵是奇函数,∴,∴,,是奇函数,,,,切线方程为,即.故选B.【点睛】本题考查导数的几何意义,考查函数的奇偶性,本题难度一般.9、D【解析】
已知向量,,根据,得到,即,再利用基本不等式求解.【详解】已知向量,,因为,所以,即,又因为,,所以,当且仅当,,即时,取等号,所以的最大值为.故选:D【点睛】本题主要考查平面向量的数量积运算和基本不等式的应用,还考查了运算求解的能力,属于中档题.10、D【解析】每个同学都有2种选择,根据乘法原理,不同的报名方法共有种,应选D.11、C【解析】分析:由三视图可知,该几何体表示一个棱长为的正方体切去一个以直角边长为的等腰直角三角形为底面,高为的三棱锥,即可利用体积公式,求解几何体的体积.详解:由给定的三视图可知,该几何体表示一个棱长为的正方体切去一个以直角边长为的等腰直角三角形为底面,高为的三棱锥,所以该几何体的体积为,故选C.点睛:本题考查了几何体的三视图及几何体的体积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线.求解以三视图为载体的空间几何体的表面积与体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解.12、D【解析】
先根据二项式系数的性质求得n=5,可得二项式展开式的通项公式,再令x的幂指数等于3,求得r的值,即可求得结果.【详解】由3x+xn展开式的二项式系数之和为2n=32,求得可得3x+x5展开式的通项公式为Tr+1=C5r•3x5-r•xr令5-r2=3,求得r=4,则展开式中含x3故选:D.【点睛】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】分析:先确定随机变量取法,再分别求对应概率,最后根据数学期望公式求期望.详解:获得奖金数为随机变量ξ,则ξ=6,9,12,15,所以ξ的分布列为:ξ691215PE(ξ)=6×+9×+12×+15×=.点睛:本题考查数学期望公式,考查基本求解能力.14、1【解析】
以D点为原点,的方向分别为轴建立空间直角坐标系,求出各顶点的坐标,进而求出平面的法向量,代入向量点到平面的距离公式,即可求解.【详解】以为坐标原点,,,的方向分别为,,轴的正方向,建立空间直角坐标系,则,,,所以,,,设
是平面的法向量,则,即,令,可得,故,设点在平面上的射影为,连接,则是平面的斜线段,所以点到平面的距离.【点睛】本题主要考查了空间向量在求解距离中的应用,对于利用空间向量求解点到平面的距离的步骤通常为:①求平面的法向量;②求斜线段对应的向量在法向量上的投影的绝对值,即为点到平面的距离.空间中其他距离问题一般都可转化为点到平面的距离求解.着重考查了推理与运算能力,属于基础题.15、②④⑤【解析】分析:根据方程性质、回归方程性质及其含义、卡方含义确定命题真假.详解:由方差的性质知①正确;由线性回归方程的特点知③正确;回归方程若变量增加一个单位时,则平均减少5个单位;曲线上的点与该点的坐标之间不一定具有相关关系;在一个列联表中,由计算得,只能确定两个变量之间有相关关系的可能性,所以②④⑤均错误.点睛:本题考查方程性质、回归方程性质及其含义、卡方含义,考查对基本概念理解与简单应用能力.16、【解析】
首先将题意转化为函数与恰有两个交点,当和时,利用函数的图象易得交点个数.当,利用表示直线的斜率,结合图象即可求出的范围.【详解】由题知:函数恰有两个零点.等价于函数与恰有两个交点.当时,函数与恰有一个交点,舍去.当时,函数与恰有两个交点.当时,如图设与的切点为,,,,则切线方程为,原点代入,解得,.因为函数与恰有两个交点,由图知.综上所述:或.故答案为:.【点睛】本题主要考查函数的零点问题,分类讨论和数形结合为解决本题的关键,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)列联表见解析;有的把握认为选择科目与性别有关.(2)分布列见解析;【解析】
(1)根据分层抽样,求得抽到男生、女生的人数,得到的列联表,求得的值,即可得到结论;(2)求得这4名女生中选择地理的人数可为,求得相应的概率,得到分布列,利用期望的公式计算,即可求解.【详解】(1)由题意,抽取到男生人数为,女生人数为,所以列联表为:选择“物理”选择“地理”总计男生451055女生252045总计7030100所以,所以有的把握认为选择科目与性别有关.(2)从45名女生中分层抽样抽9名女生,所以这9名女生中有5人选择物理,4人选择地理,9名女生中再选择4名女生,则这4名女生中选择地理的人数可为.设事件发生概率为,则,,,,.所以的分布列为:01234期望.【点睛】本题主要考查了独立性检验及其应用,以及离散型随机变量的分布列与期望的计算,其中解答中认真审题,得出随机变量的取值,求得相应的概率,得出分布列,利用公式准确计算是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.18、(1)见解析(2)【解析】试题分析:(1)函数的单调区间与导数的符号相关,而函数的导数为,故可以根据的符号讨论导数的符号,从而得到函数的单调区间.(2)若不等式在上有解,那么在上,.但在上的单调性不确定,故需分三种情况讨论.解析:(1),①当时,在上,在上单调递增;②当时,在上;在上;所以在上单调递减,在上单调递增.综上所述,当时,的单调递增区间为,当时,的单调递减区间为,单调递增区间为.(2)若在上存在,使得成立,则在上的最小值小于.①当,即时,由(1)可知在上单调递增,在上的最小值为,由,可得,②当,即时,由(1)可知在上单调递减,在上的最小值为,由,可得;③当,即时,由(1)可知在上单调递减,在上单调递增,在上的最小值为,因为,所以,即,即,不满足题意,舍去.综上所述,实数的取值范围为.点睛:函数的单调性往往需要考虑导数的符号,通常情况下,我们需要把导函数变形,找出能决定导数正负的核心代数式,然后就参数的取值范围分类讨论.又不等式的恒成立问题和有解问题也常常转化为函数的最值讨论,比如:“在上有解”可以转化为“在上,有”,而“在恒成立”可以转化为“在上,有”.19、(1);(2)【解析】试题分析:(1)直线的参数方程是标准参数方程,因此可把直线参数方程代入曲线的方程,由利用韦达定理可得;(2)把点极坐标化为直角坐标,知为直线参数方程的定点,因此利用参数的几何意义可得.试题解析:(1)把直线的参数方程对应的坐标代入曲线方程并化简得7t2+60t﹣125=0设A,B对应的参数分别为t1,t2,则.∴.(2)由P的极坐标为,可得,.∴点P在平面直角坐标系下的坐标为(﹣2,2),根据中点坐标的性质可得AB中点M对应的参数为.∴由t的几何意义可得点P到M的距离为.点睛:过点,倾斜角为的直线的标准参数方程为参数),其中直线上任一点参数的参数具有几何意义:,且方向向上时,为正,方向向下时,为负.20、(1).(2).【解析】分析:(1)分段讨论即可;(2)分别求出和的最小值,解出即可.详解:(1)由,得,∴或或解得,故不等式的解集为.(2)∵,∴的最小值为.∵,∴,则或,解得.点睛:求解与绝对值不等式有关的最值问题的方法求解含参数的不等式存在性问题需要过两关:第一关是转化关,先把存在性问题转化为求最值问题;不等式的解集为R是指不等式的恒成立问题,而不等式的解集为∅的对立面也是不等式的恒成立问题,此两类问题都可转化为最值问题,即f(x)<a恒成立⇔a>f(x)max,f(x)>a恒成立⇔a<f(x)min.第二关
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 暨南大学《口腔临床药物学》2021-2022学年第一学期期末试卷
- 冷热疗法课件
- 济宁学院《商务英语视听说IV》2021-2022学年第一学期期末试卷
- 仓管员工作总结
- 儿童重症感染的治疗
- 翻译三级笔译综合能力模拟19
- 中国古典园林史
- 肱骨干骨折护理教学查房
- 二零二四年度广告发布合同标的及费用2篇
- 虚拟手术口腔护理方案
- NB-T47023-2012长颈对焊法兰
- 【医学检验技术在传染病防治中的意义5000字(论文)】
- 古希腊文明智慧树知到期末考试答案章节答案2024年复旦大学
- 费曼学习法课件
- 校本教材与教学评价方案三篇
- 2024年高考语文阅读之马尔克斯小说专练(解析版)
- 2023年电力工程建设项目安全生产标准化规范
- 2024-淘宝商城入驻协议标准版
- 六年级圆与扇形奥数拓展(几何01讲)
- 小学作业设计比赛评分标准
- (新人教版)高中英语必修第三册全册分单元复习课件(共5个单元)
评论
0/150
提交评论