黑龙江省绥化市青冈县县第一中学2023年高二数学第二学期期末统考试题含解析_第1页
黑龙江省绥化市青冈县县第一中学2023年高二数学第二学期期末统考试题含解析_第2页
黑龙江省绥化市青冈县县第一中学2023年高二数学第二学期期末统考试题含解析_第3页
黑龙江省绥化市青冈县县第一中学2023年高二数学第二学期期末统考试题含解析_第4页
黑龙江省绥化市青冈县县第一中学2023年高二数学第二学期期末统考试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.为了得到函数的图象,可以将函数的图象()A.向右平移个单位长度 B.向左平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度2.已知变量,由它们的样本数据计算得到的观测值,的部分临界值表如下:0.100.050.0250.0100.0052.7063.8415.0246.6357.879以下判断正确的是()A.在犯错误的概率不超过0.05的前提下认为变量有关系B.在犯错误的概率不超过0.05的前提下认为变量没有关系C.有的把握说变量有关系D.有的把握说变量没有关系3.已知,,,,若(、均为正实数),根据以上等式,可推测、的值,则等于()A. B. C. D.4.设函数,()A.3 B.6 C.9 D.125.设满足约束条件,则的最大值是()A.-3 B.2 C.4 D.66.设是同一个半径为4的球的球面上四点,为等边三角形且其面积为,则三棱锥体积的最大值为A. B. C. D.7.下列函数中,既是偶函数又在单调递增的是()A. B. C. D.8.已知点A0,2,抛物线C:y2=2px(p>0)的焦点为F,射线FA与抛物线C相交于点M,与其准线相交于点N,若FMA.18B.14C.29.把编号分别为1,2,3,4,5的五张电影票全部分给甲、乙、丙三个人,每人至少一张,若分得的电影票超过一张,则必须是连号,那么不同分法的种数为()A.36 B.40 C.42 D.4810.一个口袋内有12个大小形状完全相同的小球,其中有n个红球,若有放回地从口袋中连续取四次(每次只取一个小球),恰好两次取到红球的概率大于,则n的值共有()A.1个 B.2个 C.3个 D.4个11.(为虚数单位),则复数对应的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.已知双曲线的右焦点与抛物线y2=12x的焦点重合,则该双曲线的焦点到其渐近线的距离等于A. B. C.3 D.5二、填空题:本题共4小题,每小题5分,共20分。13.若函数有极大值又有极小值,则的取值范围是__________.14.将红、黄、蓝三种颜色的三颗棋子分别放入方格图中的三个方格内,如图,要求任意两颗棋子不同行、不同列,且不在方格图所在正方形的同一条对角线上,则不同放法共有________种.15.若的展开式中的第项等于,则的值为__________.16.已知复数z满足(1+2i)•(1+z)=﹣7+16i,则z的共轭复数_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,已知正四棱柱的底面边长为2,侧棱长为3,,垂足为,交于点.(1)求证:⊥平面;(2)记直线与平面所成的角,求的值.18.(12分)某校要用三辆汽车从新校区把教职工接到老校区,已知从新校区到老校区有两条公路,汽车走公路①堵车的概率为,不堵车的概率为;汽车走公路②堵车的概率为,不堵车的概率为.若甲、乙两辆汽车走公路①,丙汽车由于其他原因走公路②,且三辆车是否堵车相互之间没有影响.(1)若三辆汽车中恰有一辆汽车被堵的概率为,求走公路②堵车的概率;(2)在(1)的条件下,求三辆汽车中被堵车辆的个数的分布列和数学期望.19.(12分)如图所示,在底面为平行四边形的四棱锥P-ABCD中,AB⊥AC,PA⊥平面ABCD,且PA=AB=2,AC=1,点E是PD的中点.(1)求证:PB∥平面AEC;(2)求二面角E-AC-B的大小.20.(12分)已知函数,.(I)若,求曲线在点处的切线方程;(Ⅱ)若函数在上是减函数,即在上恒成立,求实数的取值范围.21.(12分)已知函数在处取得极小值1.(1)求的解析式;(2)求在上的最值.22.(10分)如图,在正四棱柱中,,,建立如图所示的空间直角坐标系.(1)若,求异面直线与所成角的大小;(2)若,求直线与平面所成角的正弦值;(3)若二面角的大小为,求实数的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】因为把的图象向右平移个单位长度可得到函数的图象,所以,为了得到函数的图象,可以将函数的图象,向右平移个单位长度故选D.2、A【解析】分析:根据所给的观测值,对照临界值表中的数据,即可得出正确的结论.详解:∵观测值,

而在观测值表中对应于3.841的是0.05,

∴在犯错误的概率不超过0.05的前提下认为变量有关系.

故选:A.点睛:本题考查了独立性检验的应用问题,是基础题.3、B【解析】

根据前面几个等式归纳出一个关于的等式,再令可得出和的值,由此可计算出的值.【详解】,,,由上可归纳出,当时,则有,,,因此,,故选B.【点睛】本题考查归纳推理,解题时要根据前几个等式或不等式的结构进行归纳,考查推理能力,属于中等题.4、C【解析】.故选C.5、D【解析】

先由约束条件画出可行域,再利用线性规划求解.【详解】如图即为,满足约束条件的可行域,由,解得,由得,由图易得:当经过可行域的时,直线的纵截距最大,z取得最大值,所以的最大值为6,故选.【点睛】本题主要考查线性规划求最值,意在考查学生对该知识的理解掌握水平,属于基础题.6、B【解析】

分析:作图,D为MO与球的交点,点M为三角形ABC的中心,判断出当平面时,三棱锥体积最大,然后进行计算可得.详解:如图所示,点M为三角形ABC的中心,E为AC中点,当平面时,三棱锥体积最大此时,,点M为三角形ABC的中心中,有故选B.点睛:本题主要考查三棱锥的外接球,考查了勾股定理,三角形的面积公式和三棱锥的体积公式,判断出当平面时,三棱锥体积最大很关键,由M为三角形ABC的重心,计算得到,再由勾股定理得到OM,进而得到结果,属于较难题型.7、B【解析】

根据函数的奇偶性和单调性,对选项逐一分析,由此得出正确选项.【详解】对于A选项,由于定义域不关于原点对称,故为非奇非偶函数.对于B选项,函数为偶函数,当时,为增函数,故B选项正确.对于C选项,函数图像没有对称性,故为非奇非偶函数.对于D选项,在上有增有减.综上所述,本小题选B.【点睛】本小题主要考查函数的奇偶性与单调性,属于基础题.8、C【解析】试题分析:设,是点到准线的距离,,|FM||MN|=55,即,那么,即直线的斜率是-2,所以,解得,故选C.考点:抛物线的简单性质【思路点睛】此题考察抛物线的性质,和数形结合思想的考察,属于偏难点的基础题型,对于抛物线的考察不太同于椭圆和双曲线,对应抛物线的基础题型,当图形中有点到焦点的距离,就一定联想到点到准线的距离,再跟据平面几何的关系分析,比如此题,|FM||MN|=55,转化为,那分析图像等于知道的余弦值,也就知道了直线9、A【解析】

将情况分为113和122两种情况,相加得到答案.【详解】当分的票数为这种情况时:当分的票数为这种情况时:一张票数的人可以选择:不同分法的种数为36故答案选A【点睛】本题考查了排列组合,将情况分为两类可以简化运算.10、C【解析】

设每次取到红球的概率为p,结合独立事件的概率的计算公式,求得,再由,即可判定,得到答案.【详解】由题意,设每次取到红球的概率为p,可得,即,解得,因为,所以,所以或6或7.故选:C.【点睛】本题主要考查了独立事件的概率的计算公式及其应用,其中解答中正确理解题意,合理利用独立事件的概率的计算公式,求得相应的概率的取值范围是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.11、A【解析】

通过求出,然后得到复数对应的点的坐标.【详解】由得所以复数在复平面对应的点在第一象限.【点睛】本题主要考查复数的基本概念,两个复数代数形式的除法,复数与复平面内对应点之间的关系,属于基础题.12、A【解析】

因为抛物线的焦点是,所以双曲线的半焦距,,,所以一条渐近线方程为,即,,故选A.【点考点定位】本题主要考查双曲线、抛物线的标准方程、几何性质、点和直线的位置关系,考查推理论证能力、逻辑思维能力、计算求解能力、数形结合思想、转化化归思想二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

由题可知有两个不相等的实数根,再根据二次函数的判别式法求解即可.【详解】由题,有两个不相等的实数根,故,即,解得或.故的取值范围是.故答案为:【点睛】本题主要考查了根据函数的极值求解参数范围的问题,同时也考查了二次函数的根的分布问题,属于基础题.14、【解析】

根据题意,用间接法分析,先计算三颗棋子分别放入方格图中的三个方格内任意两颗棋子不同行、不同列的放法数目,再排除其中在同一条对角线上的数目,分析即可得出答案.【详解】解:根据题意,用间接法分析:若三颗棋子分别放入方格图中的三个方格内,且任意两颗棋子不同行、不同列,第一颗棋子有种放法,第二颗棋子有种放法,第三颗棋子有种放法,则任意两颗棋子不同行、不同列的放法有种,其中在正方形的同一条对角线上的放法有种,则满足题意的放法有种.故答案为:.【点睛】本题考查分步计数原理的应用,属于基础题.15、【解析】

先根据二项展开式的通项公式求得,然后根据等比数列的求和公式求和,再求极限即可得到答案.【详解】由的展开式的通项公式,得,依题意可得,解得,所以.故答案为:1【点睛】本题考查了二项展开式的通项公式,等比数列的求和公式,求极限,属于中档题.16、4﹣6i【解析】

根据复数的乘除法运算法则求得复数,再根据共轭复数的概念可得答案.【详解】由(1+2i)•(1+z)=﹣7+16i,得,所以.故答案为:.【点睛】本题考查了复数的乘除法运算法则,考查了共轭复数的概念,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2).【解析】分析:此题建系比较容易,所以两问都用建系处理,以为坐标原点,分别以直线所在直线为轴,轴,轴,分别写出坐标,设,利用解得所以,所以平面;(2)计算平面法向量,所以即可解题详解:(1)如图,以为坐标原点,分别以直线所在直线为轴,轴,轴,建立空间直角坐标系,易得,设,则,因为,所以,解得,即,又,,所以,所以,且,所以,又,所以平面.(2),,,设平面的一个法向量,则即令,则,即,.点睛:空间向量是解决立体几何问题很好的方法,也是高考每年的必考考点,所以在遇到此类问题时要注意合理的建立坐标系,建系的原则要尽量使得更多的点落在坐标轴上,这样方便计算.18、(1);(2).【解析】

(1)三辆车是否堵车相互之间没有影响三辆汽车中恰有一辆汽车被堵,是一个独立重复试验,走公路②堵车的概率为p,不堵车的概率为1﹣p,根据独立重复试验的概率公式写出关于P的方程,解出P的值,得到结果(2)三辆汽车中被堵车辆的个数ξ,由题意知ξ可能的取值为0,1,2,3,求出相应的概率写出变量的分布列,即可求得期望.【详解】解:(1)三辆车是否堵车相互之间没有影响三辆汽车中恰有一辆汽车被堵,是一个独立重复试验,走公路②堵车的概率为p,不堵车的概率为1﹣p,得即3p=1,则即p的值为.(2)由题意知ξ可能的取值为0,1,2,3∴ξ的分布列为:∴Eξ【点睛】本题考查离散型随机变量的分布列和期望,考查相互独立事件同时发生的概率,考查利用概率知识解决实际问题.19、(1)见解析(2)135°【解析】试题分析:(1)一般线面平行考虑连接中点,形成中位线,连BD交AC于M,连接EM即可;(2)以A为原点建系,显然只需求平面EAC的法向量,利用法向量求二面角.试题解析:∵PA⊥平面ABCD,AB,AC⊂平面ABCD,∴PA⊥AC,PA⊥AB,且AC⊥AB,以A为坐标原点建立如图所示空间直角坐标系.(1)∵D(1,-2,0),P(0,0∴AE=(12设平面AEC的法向量为n1=(x,y,z),则{12x-y+z=0又B(0,2,0),所以PB=(0,2,-2)又PB⊄平面AEC,因此,PB∥平面AEC.(2)∵平面BAC的一个法向量为AP=(由(1)知,平面AEC的法向量为n1设二面角E-AC-B的平面角为θ(θ为钝角),则cosθ=-|cos<所以二面角E-AC-B的大小为135°.20、(Ⅰ)(Ⅱ)【解析】

(1)求出函数的导数,计算f(1),f′(1)的值,写出切线方程即可(2)求出函数的导数,根据函数的单调性求出a的范围即可.【详解】(1)当时,,所以,

所以,又,

所以曲线在点处的切线方程为;

(2)因为函数f(x)在[1,3]上是减函数,

所以在[1,3]上恒成立,令,则,解得,故.所以实数的取值范围.【点睛】本题主要考查了函数的单调性,函数的最值,导

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论