版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图,在矩形纸片ABCD中,AD=4cm,把纸片沿直线AC折叠,使点D落在E处,CE交AB于点O,若BO=3m,则AC的长为()A.6cm B.8cm C.5cm D.4cm2.如图,正方形中,点是对角线上的一点,且,连接,,则的度数为()A.20° B.22.5° C.25° D.30°3.已知,则化简的结果是()A. B. C.﹣3 D.34.以下列长度的线段为边,能构成直角三角形的是()A.2,3,4 B.4,5,6 C.8,13,5 D.1,,15.已知点P(a+l,2a-3)关于x轴的对称点在第一象限,则a的取值范围是()A. B. C. D.6.直角三角形纸片的两直角边长分别为6,8,现将△ABC如图折叠,使点A与点B重合,则折痕DE的长是()A. B. C. D.7.若一组数据的方差是3,则的方差是()A.3 B.6 C.9 D.128.某旅游纪念品商店计划制作一种手工编织的工艺品600件,制作120个以后,临近旅游旺季,商店老板决定加快制作进度,后来每天比原计划多制作20个,最后共用时11天完成,求原计划每天制作该工艺品多少个?设原计划每天制作该工艺品个,根据题意可列方程()A. B.C. D.9.如图,在△ABC中,AC=BC,∠ACB=90°,AD平分∠BAC,与BC相交于点F,过点B作BE⊥AD于点D,交AC延长线于点E,过点C作CH⊥AB于点H,交AF于点G,则下列结论:⑤;正确的有()个.A.1 B.2 C.3 D.410.已知P1(﹣1,y1),P2(2,y2)是一次函数y=﹣x+1图象上的两个点,则y1,y2的大小关系是()A.y1=y2 B.y1<y2 C.y1>y2 D.不能确定11.如图,数轴上所表示关于x的不等式组的解集是()A. B. C. D.12.将直线向下平移2个单位,得到直线()A. B. C. D.二、填空题(每题4分,共24分)13.如果点A(1,m)与点B(3,n)都在反比例函数y=(k>0)的图象上,那么代数式m-3n+6的值为______.14.小明的生日是6月19日,他用6、1、9这三个数字设置了自己旅行箱三位数字的密码,但是他忘记了数字的顺序,那么他能一次打开旅行箱的概率是__________.15.如图,将长方形纸片折叠,使边落在对角线上,折痕为,且点落在对角线处.若,,则的长为_____.16.一架5米长的梯子斜靠在一竖直的墙上,这时梯足距离墙脚,若梯子的顶端下滑,则梯足将滑动______.17.关于的方程是一元二次方程,那么的取值范围是_______.18.计算的结果是_____.三、解答题(共78分)19.(8分)因魔幻等与众不同的城市特质,以及抖音等新媒体的传播,重庆已成为国内外游客最喜欢的旅游目的地城市之一.著名“网红打卡地”磁器口在2018年五一长假期间,接待游客达20万人次,预计在2020年五一长假期间,接待游客将达28.8万人次.在磁器口老街,美食无数,一家特色小面店希望在五一长假期间获得好的收益,经测算知,该小面成本价为每碗6元,借鉴以往经验:若每碗卖25元,平均每天将销售300碗,若价格每降低1元,则平均每天多销售30碗.(1)求出2018至2020年五一长假期间游客人次的年平均增长率;(2)为了更好地维护重庆城市形象,店家规定每碗售价不得超过20元,则当每碗售价定为多少元时,店家才能实现每天利润6300元?20.(8分)已知关于的一元二次方程:;(1)求证:无论为何值,方程总有实数根;(2)若方程的一个根是2,求另一个根及的值.21.(8分)学校有一批复印任务,原来由甲复印社承接,按每100页40元计费.现乙复印社表示:若学校先按月付给一定数额的承包费,则可按每100页15元收费.两复印社每月收费情况如图所示.根据图象回答:(1)设两家复印社每月复印任务为张,分别求出甲复印社的每月复印收费y甲(元)与乙复印社的每月复印收费y乙(元)与复印任务(张)之见的函数关系式.(2)乙复印社的每月承包费是多少?(3)当每月复印多少页时,两复印社实际收费相同?(4)如果每月复印页数是1200页,那么应选择哪个复印社.22.(10分)已知y-2与x+3成正比例,且当x=-4时,y=0,求当x=-1时,y的值.23.(10分)已知四边形ABCD,请你作出一个新图形,使新图形与四边形ABCD的相似比为2:1,用圆规、直尺作图,不写作法,但要保留作图痕迹.24.(10分)为了了解同学们对垃圾分类知识的知晓程度,增强同学们的环保意识,普及垃圾分类及投放的相关知识.某校环保社团的同学们设计了“垃圾分类知识及投放情况”的问卷,并在本校随机抽取了若干名同学进行了问卷测试,根据测试成绩分布情况,他们将全部成绩分成A,B,C,D四组,并绘制了如下不完整的统计图表:组别分数段频数频率A61≤x<71abB71≤x<81241.4C81≤x<9118cD91≤x<111121.2请根据上述统计图表,解答下列问题:(1)共抽取了多少名学生进行问卷测试?(2)补全频数分布直方图;(3)如果测试成绩不低于81分者为“优秀”,请你估计全校2111名学生中,“优秀”等次的学生约有多少人?25.(12分)如图,在5×5的正方形网格中,每个小正方形的边长都为1.请在所给网格中按下列要求画出图形.(1)画线段AC,使它的另一个端点C落在格点(即小正方形的顶点)上,且长度为;(2)以线段AC为对角线,画凸四边形ABCD,使四边形ABCD既是中心对称图形又是轴对称图形,顶点都在格点上,且边长是无理数;(3)求(2)中四边形ABCD的周长和面积.26.某校实行学案式教学,需印制若干份教学学案.印刷厂有,甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要,两种印刷方式的费用y(元)与印刷份数x(份)之间的关系如图所示.(1)填空:甲种收费方式的函数关系式是__________,乙种收费方式的函数关系式是__________.(2)该校某年级每次需印制100~450(含100和450)份学案,选择哪种印刷方式较合算.
参考答案一、选择题(每题4分,共48分)1、D【解析】
根据折叠前后角相等可证AO=CO,在直角三角形CBO中,运用勾股定理求得CO,再根据线段的和差关系和勾股定理求解即可.【详解】根据折叠前后角相等可知∠DCA=∠ACO,∵四边形ABCD是矩形,∴AB∥CD,AD=BC=4cm,∴∠DCA=∠CAO,∴∠ACO=∠CAO,∴AO=CO,在直角三角形BCO中,CO==5cm,∴AB=CD=AO+BO=3+5=8cm,在Rt△ABC中,AC=cm,故选:D.【点睛】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.2、B【解析】
根据正方形的性质可得∠CAD=45°,根据等腰三角形的性质可得∠ADE的度数,根据∠CDE=90°-∠ADE即可得答案.【详解】∵AC是正方形ABCD的对角线,∴∠CAD=45°,∵AE=AB,AB=AD,∴AE=AD,∴∠ADE=∠AED=67.5°,∵∠ADC=90°,∴∠CDE=∠ADC-∠ADE=90°-67.5°=22.5°.故选B.【点睛】本题考查了正方形的性质及等腰三角形的性质,正方形四边都相等,四个角都为90°,对角线互相垂直平分,并且平分每一组对角.熟练掌握相关性质是解题关键.3、D【解析】
先把变形为+,根据a的取值范围可确定1-a和a-4的符号,然后根据二次根式的性质即可得答案.【详解】=+∵2<a<4,∴1-a<0,a-4<0,∴+=-(1-a)-(a-4)=-1+a-a+4=3,故选D.【点睛】本题考查了二次根式的化简,当a≥0时,=a;当a<0时,=-a;熟练掌握二次根式的性质是解题关键.4、D【解析】
欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【详解】解:A、因为22+32≠42,所以不能组成直角三角形;B、因为52+42≠62,所以不能组成直角三角形;C、因为52+82≠132,所以不能组成直角三角形;D、因为12+12=()2,所以能组成直角三角形.故选:D.【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.5、B【解析】关于x轴对称的点的坐标,一元一次不等式组的应用.【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”,再根据各象限内的点的坐标的特点列出不等式组求解即可:∵点P(a+1,2a-3)关于x轴的对称点在第一象限,∴点P在第四象限.∴.解不等式①得,a>-1,解不等式②得,a<,所以,不等式组的解集是-1<a<.故选B.6、D【解析】
先通过勾股数得到,再根据折叠的性质得到,,,设,则,,在中利用勾股定理可计算出x,然后在中利用勾股定理即可计算得到DE的长.【详解】直角三角形纸片的两直角边长分别为6,8,,又折叠,,,,设,则,,在中,,即,解得,在中,故选D.【点睛】本题考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应线段相等也考查了勾股定理.7、D【解析】
先根据的方差是3,求出数据的方差,进而得出答案.【详解】解:∵数据x1,x2,x3,x4,x5的方差是3,∴数据2x1,2x2,2x3,2x4,2x5的方差是4×3=12;∴数据的方差是12;故选:D.【点睛】本题考查了方差的定义.当数据都加上一个数时,平均数也加这个数,方差不变,即数据的波动情况不变;当数据都乘以一个数时,平均数也乘以这个数,方差变为这个数的平方倍.8、C【解析】
根据题意,可以列出相应的分式方程,本题得以解决.【详解】解:由题意可得,,故选:C.【点睛】本题考查由实际问题抽象出分式方程,解答本题的关键是明确题意,列出相应的分式方程.9、D【解析】
①②正确,只要证明△BCE≌△ACF,△ADB≌△ADE即可解决问题;③正确,只要证明GB=GA,得到△BDG是等腰直角三角形,即可得到;④正确,求出∠CGF=67.5°=∠CFG,则CF=CG=CE,然后AE=AC+CE=BC+CG,即可得到结论;⑤错误,作GM⊥AC于M.利用角平分线的性质定理即可证明;【详解】解:∵AD⊥BE,∴∠FDB=∠FCA=90°,∵∠BFD=∠AFC,∴∠DBF=∠FAC,∵∠BCE=∠ACF=90°,BC=AC,∴△BCE≌△ACF,∴EC=CF,AF=BE,故①正确,∵∠DAB=∠DAE,AD=AD,∠ADB=∠ADE=90°,∴△ADB≌△ADE,∴BD=DE,∴AF=BE=2BD,故②正确,如图,连接BG,∵CH⊥AB,AC=AB,∴BH=AH,∠BHG=∠AHG=90°∵HG=HG,∴△AGH≌△BGH,∴BG=AG,∠GAH=∠GBH=22.5°,∴∠DGB=∠GAH+∠GBH=45°,∴△BDG是等腰直角三角形,∴BD=DG=DE;故③正确;由△ACH是等腰直角三角形,∴∠ACG=45°,∴∠CGF=45°+22.5°=67.5°,∵∠CFG=∠DFB=90°-22.5°=67.5°,∴∠CGF=∠CFG,∴CG=CF,∵AB=AE,BC=AC,CE=CF=CG,又∵AE=AC+CE,∴AB=BC+CG,故④正确;作GM⊥AC于M,由角平分线性质,GH=GM,∴△AGH≌△AGM(HL),∴△AGH的面积与△AGM的面积相等,故⑤错误;综合上述,正确的结论有:①②③④;故选择:D.【点睛】本题考查全等三角形的判定和性质、直角三角形斜边中线的性质、等腰直角三角形的性质、角平分线的性质定理等知识,解题的关键是熟练掌握基本知识,属于中考选择题中的压轴题.10、C【解析】
根据P1(-3,y1),P1(1,y1)是一次函数y=-x-1的图象上的两个点,根据一次函数k=-1<0可得:y随x的增大而减小判断出y1,y1的大小.【详解】∵P1(-3,y1),P1(1,y1)是一次函数y=-x-1的图象上的两个点,且-3<1,
∴y1>y1.
故选C.【点睛】考查了一次函数的性质,解题关键是熟记一次函数的性质:k>0时,图象从左到右上升,y随x的增大而增大;k<0时,图象从左到右下降,y随x的增大而减小.11、A【解析】试题解析:由数轴可得:关于x的不等式组的解集是:x≥1.故选A.12、A【解析】
根据一次函数图象的平移规律即可得.【详解】由一次函数图象的平移规律得:向下平移得到的直线为即故选:A.【点睛】本题考查了一次函数图象的平移规律,掌握图象的平移规律是解题关键.二、填空题(每题4分,共24分)13、1【解析】
点A(1,m)与点B(3,n)都在反比例函数y=(k>0)的图象上,代入可求出m、n,进而求代数式的值.【详解】解;把点A(1,m)、B(3,n)代入y=得:m=3,n=1∴m-3n+1=3-3×1+1=1.故答案为:1.【点睛】考查反比例函数图象上点的坐标特点,理解函数图象的意义,正确的代入和细心的计算是解决问题的前提.14、【解析】
首先利用列举法可得:等可能的结果有:619,691,169,196,961,916;然后直接利用概率公式求解即可求得答案.【详解】解:∵等可能的结果有:619,691,169,196,961,916;∴他能一次打开旅行箱的概率是:,故答案为:.【点睛】此题考查了列举法求概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.15、1.5【解析】
首先利用勾股定理计算出AC的长,再根据折叠可得△DEC≌△D′EC,设ED=x,则D′E=x,AD′=AC-CD′=2,AE=4-x,再根据勾股定理可得方程22+x2=(4-x)2,再解方程即可.【详解】∵AB=3,AD=4,∴DC=3,BC=4∴AC==5,根据折叠可得:△DEC≌△D'EC,∴D'C=DC=3,DE=D'E,设ED=x,则D'E=x,AD'=AC−CD'=2,AE=4−x,在Rt△AED'中:(AD')2+(ED')2=AE2,即22+x2=(4−x)2,解得:x=1.5.故ED的长为1.5.【点睛】本题考查折叠问题、矩形的性质和勾股定理,解题的关键是能根据折叠前后对应线段相等,表示出相应线段的长度,然后根据勾股定理列方程求出线段的长度.16、【解析】
根据条件作出示意图,根据勾股定理求解即可.【详解】解:由题意可画图如下:在直角三角形ABO中,根据勾股定理可得,,如果梯子的顶度端下滑1米,则.在直角三角形中,根据勾股定理得到:,则梯子滑动的距离就是.故答案为:1m.【点睛】本题考查的知识点是勾股定理的应用,根据题目画出示意图是解此题的关键.17、【解析】
根据一元二次方程的概念及一般形式:即可求出答案.【详解】解:∵关于的方程是一元二次方程,∴二次项系数,解得;故答案为.【点睛】本题考查一元二次方程的概念,比较简单,做题时熟记二次项系数不能等于0即可.18、【解析】【分析】根据分式的加减法法则进行计算即可得答案.【详解】原式===,故答案为.【点睛】本题考查分式的加减运算,熟练掌握分式加减的运算法则是解题的关键,本题属于基础题.三、解答题(共78分)19、(1)年平均增长率为20%;(2)每碗售价定为20元时,每天利润为6300元.【解析】
(1)根据题意设平均增长率为未知数x,再根据题意建立方程式求解.(2)根据题意设每碗售价为未知数y,再根据题意建立方程式求解.【详解】(1)设平均增长率为,则解得:(舍)·答:年平均增长率为20%(2)设每碗售价定为元时,每天利润为6300元[300+30(25-y)]=6300·解得:·∵每碗售价不超过20元,所以.【点睛】本题考查了在实际生活中对方程式的建立及求解,熟练掌握方程式的实际运用是本题解题关键.20、(1)详见解析;(2),【解析】
(1)根据根的判别式得出△=(k﹣3)2≥0,从而证出无论k取任何值,方程总有实数根.(2)先把x=2代入原方程,求出k的值,再解这个方程求出方程的另一个根.【详解】(1)证明:(方法一).∴无论为何值时,方程总有实数根.(方法二)将代人方程,等式成立,即是原方程的解,因此,无论为何值时,方程总有实数根,(2)把代人方程解得,解方程得【点睛】本题主要考查了一元二次方程的根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.21、(1),;(2)200;(3)800页;(4)应选择乙复印社.【解析】
(1)根据甲乙复印社的收费方式,结合函数图象列出解析式即可;(2)由函数图象可直接得出答案;(3)当时,求出x即可;(4)将x=1200分别代入两函数解析式进行计算,然后作出判断.【详解】解:(1)∵由甲复印社承接,按每100页40元计费;先按月付给乙复印社一定数额的承包费,则按每100页15元收费,∴,;(2)由函数图象可得:乙复印社的每月承包费是200元;(3)当时,即,解得:,答:当每月复印800页时,两复印社实际收费相同;(4)当x=1200时,(元),(元),∵380<480,∴应选择乙复印社.【点睛】本题考查了一次函数的应用,比较简单,读懂题目信息并准确识图,理解两复印社的收费情况与复印页数的关系是解题的关键.22、2.【解析】
利用正比例函数的定义,设y-1=k(x+3),然后把已知的对应值代入求出k得到y与x之间的函数关系式;计算自变量为-1对应的y的值即可【详解】由题意,设
y-1=k(x+3)(k≠0),得:0-1=k(-4+3).解得:k=1.所以当x=-1时,y=1(-1+3)+1=2.即当x=-1时,y的值为2.【点睛】本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b,将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.也考查了一次函数的性质.23、见解析.【解析】
根据新图形与四边形ABCD的相似比为2:1,连接BD,延长BA、BD与BC在延长线上截取BA=AE,BD=DF,BC=CG,即可得出所画图形.【详解】解:如图所示.连接BD,延长BA、BD与BC在延长线上截取BA=AE,BD=DF,BC=CG,连接EF,FG,四边形BEFG即所画图形.【点睛】本题考查相似变换的性质,根据相似比得出BE、BF、BG与BA、BD、BC的关系是解决问题的关键.24、(1)61(名);(2)见解析;(3)估计全校2111名学生中,“优秀”等次的学生约有1111人.【解析】
(1)利用频数÷频率=总人数,即可解答.(2)A组频数61-(24+18+12)=6,补全见答案;(3)先求出不低于81分者为“优秀”的百分比,再利用总人数乘以“优秀”等次的学生数的百分比,即可解答.【详解】解:(1)24÷1.4=61(名)答:共抽取了61名学生进行问卷测
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 教学工作计划促进学生逻辑思辨能力
- 铝型材产品设计与模具开发合同(2024版)
- 如何实现产品的快速上市计划
- 委托中介代理出租房屋合同范本
- 中高端客户的销售技巧培训
- 面对2024:幼儿教师培训如何塑造教育未来
- 为政以德教案:2024年政治教育的新趋势
- 火电厂点检技术革新:2024年培训课件亮相
- 装修工人安全协议书
- 关于土地流转承包经营合同
- 感染性休克指南解读课件
- 建筑工程《拟投入本项目的主要施工设备表及试验检测仪器设备表》
- 月饼制作工坊传统风味美食手作
- 餐厅后厨巡检总结汇报
- 北京海淀区2023-2024学年六年级上学期期末数学数学试卷
- 日专生职业生涯规划书
- 医用耗材冷链配送方案
- 《初级会计实务》课件
- 医院感染的消毒剂与清洗剂选择与使用
- 工程制图复习题
- 汽车涂装工艺中的喷涂电磁屏蔽涂层技术
评论
0/150
提交评论