山西省忻州市原平石寺中学2022-2023学年高一数学理期末试题含解析_第1页
山西省忻州市原平石寺中学2022-2023学年高一数学理期末试题含解析_第2页
山西省忻州市原平石寺中学2022-2023学年高一数学理期末试题含解析_第3页
山西省忻州市原平石寺中学2022-2023学年高一数学理期末试题含解析_第4页
山西省忻州市原平石寺中学2022-2023学年高一数学理期末试题含解析_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省忻州市原平石寺中学2022-2023学年高一数学理期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.(4分)根据表格内的数据,可以断定方程ex﹣x﹣2=0的一个根所在的区间是()x﹣10123ex0.3712.727.3920.08x+212345

A. (﹣1,0) B. (0,1) C. (1,2) D. (2,3)参考答案:C考点: 二分法求方程的近似解.专题: 计算题;函数的性质及应用.分析: 令f(x)=ex﹣x﹣2,求出选项中的端点函数值,从而由根的存在性定理判断根的位置.解答: 解:由上表可知,令f(x)=ex﹣x﹣2,则f(﹣1)≈0.37+1﹣2<0,f(0)=1﹣0﹣2=﹣1<0,f(1)≈2.72﹣1﹣2<0,f(2)≈7.39﹣2﹣2>0,f(3)≈20.09﹣3﹣2>0.故f(1)f(2)<0,故选:C.点评: 考查了二分法求方程近似解的步骤,属于基础题.2.我国古代著名的《周髀算经》中提到:凡八节二十四气,气损益九寸九分六分分之一;冬至晷(guǐ)长一丈三尺五寸,夏至晷长一尺六寸意思是:一年有二十四个节气,每相邻两个节气之间的日影长度差为分;且“冬至”时日影长度最大,为1350分;“夏至”时日影长度最小,为160分则“立春”时日影长度为A.分 B.分 C.分 D.分参考答案:B【分析】首先“冬至”时日影长度最大,为1350分,“夏至”时日影长度最小,为160分,即可求出,进而求出立春”时日影长度为.【详解】解:一年有二十四个节气,每相邻两个节气之间的日影长度差为分,且“冬至”时日影长度最大,为1350分;“夏至”时日影长度最小,为160分.,解得,“立春”时日影长度为:分.故选B.【点睛】本题考查等差数列的性质等基础知识,考查运算求解能力,利用等差数列的性质直接求解.3.各项为正数的等比数列,,则A.5

B.10

C.15

D.20参考答案:C4.已知a,b为实数,则“a+b>4”是“a,b中至少有一个大于2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件参考答案:A解析:“a+b>4”?“a,b中至少有一个大于2”,反之不成立.所以“a+b>4”是“a,b中至少有一个大于2”的充分不必要条件.故选A.5.已知,,则(

)A.2 B. C.4 D.参考答案:C【分析】先求出坐标,再利用向量的模的公式求解.【详解】由题得=(0,4)所以.故选:C【点睛】本题主要考查向量的坐标的求法和向量的模的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.6.已知数列{an}的前n项和为Sn,且a1=0,an+1=(n∈N+).则a33=()A.4(4﹣) B.4(4﹣) C.4(﹣4) D.4(﹣)参考答案:D【考点】数列递推式.【分析】an+1=(n∈N+),可得﹣=n,利用“累加求和”方法、等差数列的求和公式及其递推关系即可得出.【解答】解:∵an+1=(n∈N+),an+1=Sn+1﹣Sn,∴﹣=n,∴=﹣++…++=(n﹣1)+(n﹣2)+…+1+0=.∴Sn=,∴a33=S33﹣S32=﹣=4,故选:D.7.已知ω>0,0<φ<π,直线x=和x=是函数f(x)=sin(ωx+φ)图象的两条相邻的对称轴,则φ=()A. B. C. D.参考答案:A【考点】HK:由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】通过函数的对称轴求出函数的周期,利用对称轴以及φ的范围,确定φ的值即可.【解答】解:因为直线x=和x=是函数f(x)=sin(ωx+φ)图象的两条相邻的对称轴,所以T==2π.所以ω=1,并且sin(+φ)与sin(+φ)分别是最大值与最小值,0<φ<π,所以φ=.故选A.8.一对夫妇有两个孩子,已知其中一个孩子是女孩,那么另一个孩子也是女孩的概率为()A. B. C. D.参考答案:D【考点】条件概率与独立事件.【专题】计算题;整体思想;定义法;概率与统计.【分析】记事件A为“其中一个是女孩”,事件B为“另一个也是女孩”,分别求出A、B的结果个数,问题是求在事件A发生的情况下,事件B发生的概率,即求P(B|A),由条件概率公式求解即可【解答】解:一个家庭中有两个小孩只有4种可能:{男,男},{男,女},{女,男},{女,女}.记事件A为“其中一个是女孩”,事件B为“另一个也是女孩”,则A={(男,女),(女,男),(女,女)},B={(男,女),(女,男),(女,女)},AB={(女,女)}.于是可知P(A)=,P(AB)=.问题是求在事件A发生的情况下,事件B发生的概率,即求P(B|A),由条件概率公式,得P(B|A)===故选D.【点评】本题的考点是条件概率与独立事件,主要考查条件概率的计算公式:P(B|A)=,等可能事件的概率的求解公式:P(M)=(其中n为试验的所有结果,m为基本事件的结果)9.计算的结果是(

)A、

B、2

C、

D、

参考答案:B略10.已知函数,则下列说法正确的是(

)A.f(x)的周期为π B.是f(x)的一条对称轴C.是f(x)的一个递增区间 D.是f(x)的一个递减区间参考答案:ABD【分析】化简可得:,利用三角函数性质即可判断A,B正确,再利用复合函数的单调性规律即可判断C错误,D正确;问题得解.【详解】由可得:所以的周期为,所以A正确;将代入可得:此时取得最小值,所以是的一条对称轴,所以B正确;令,则由,复合而成;当时,,在递增,在不单调,由复合函数的单调性规律可得:不是的一个递增区间;所以C错误.当时,,在递增,在单调递减,由复合函数的单调性规律可得:在递减,所以D正确;故选:ABD【点睛】本题主要考查了三角函数的性质及两角和的余弦公式逆用,还考查了复合函数单调性规律,考查转化能力,属于中档题。二、填空题:本大题共7小题,每小题4分,共28分11.若,且,则的最小值为__________.参考答案:12.已知幂函数的图象经过点(2,32)则它的解析式f(x)=

.参考答案:x5【考点】幂函数的概念、解析式、定义域、值域.【专题】函数的性质及应用.【分析】设出幂函数,通过幂函数经过的点,即可求解幂函数的解析式.【解答】解:设幂函数为y=xa,因为幂函数图象过点(2,32),所以32=2a,解得a=5,所以幂函数的解析式为y=x5.故答案为:x5【点评】本题考查幂函数的函数解析式的求法,幂函数的基本知识的应用.13.(2014?商丘二模)在△ABC中,D为边BC上的中点,AB=2,AC=1,∠BAD=30°,则AD=_________.参考答案:14.已知a,b,c分别为△ABC的三个内角A,B,C的对边,且,则△ABC面积的最大值为__.参考答案:【详解】由已知,即得,15.已知函数,若,则实数的取值范围是____________.参考答案:略16.若2a=5b=10,则=

.参考答案:1【考点】对数的运算性质.【专题】计算题.【分析】首先分析题目已知2a=5b=10,求的值,故考虑到把a和b用对数的形式表达出来代入,再根据对数的性质以及同底对数和的求法解得,即可得到答案.【解答】解:因为2a=5b=10,故a=log210,b=log510=1故答案为1.【点评】此题主要考查对数的运算性质的问题,对数函数属于三级考点的内容,一般在高考中以选择填空的形式出现,属于基础性试题同学们需要掌握.17.不等式的解集是.参考答案:(﹣4,2)【考点】其他不等式的解法.【分析】由不等式可得(x﹣2)(x+4)<0,解此一元二次不等式求得原不等式的解集.【解答】解:由不等式可得<0,即(x﹣2)(x+4)<0,解得﹣4<x<2,故不等式的解集为(﹣4,2),故答案为(﹣4,2).三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图4为一组合体,其底面是正方形,平面,,且.⑴在方框内已给出了该几何体的俯视图,请在方框内画出该几何体的主视图和左视图;⑵求四棱锥的体积.参考答案:⑴该组合体的主视图和左视图如下图;⑵∵平面,平面,∴平面平面.∵,∴平面.即为所求体积的四棱锥的高.∵,∴四棱锥的体积.略19.(12分)已知函数,(1)若函数的图象经过点(-1,4),分别求,的值;(2)当时,用定义法证明:在(-∞,0)上为增函数.

参考答案:20.(本小题满分12分)一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.(1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率;(2)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求n<m+2的概率.参考答案:解:(1)从袋中随机取两个球,其一切可能的结果组成的基本事件有1和2,1和3,1和4,2和3,2和4,3和4,共6个.从袋中取出的球的编号之和不大于4的事件共有1和2,1和3,共两个.因此所求事件的概率P==.

………6分(2)先从袋中随机取一个球,记下编号为m,放回后,再从袋中随机取一个球,记下编号为n,其一切可能的结果(m,n)有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.又满足条件n≥m+2的事件为(1,3),(1,4),(2,4),共3个,所以满足条件n≥m+2的事件的概率为P1=.故满足条件n<m+2的事件的概率为1-P1=1-=.

……12分21.(12分)已知向量,设函数.

(1)求的单调增区间;

(2)若,求的值.参考答案:=

(1)当时,f(x)单调递增,解得:

∴的单调递增区间为[

(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论