下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省青岛市育才中学2022年高二数学理期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.在空间中,给出下列说法:①平行于同一个平面的两条直线是平行直线;②垂直于同一条直线的两个平面是平行平面;③若平面内有不共线的三点到平面的距离相等,则;④过平面的一条斜线,有且只有一个平面与平面垂直.其中正确的是(
)A.①③ B.②④ C.①④ D.②③参考答案:B【分析】说法①:可以根据线面平行的判定理判断出本说法是否正确;说法②:根据线面垂直的性质和面面平行的判定定理可以判断出本说法是否正确;说法③:当与相交时,是否在平面内有不共线的三点到平面的距离相等,进行判断;说法④:可以通过反证法进行判断.【详解】①平行于同一个平面的两条直线可能平行、相交或异面,不正确;易知②正确;③若平面内有不共线的三点到平面的距离相等,则与可能平行,也可能相交,不正确;易知④正确.故选B.【点睛】本题考查了线线位置关系、面面位置关系的判断,分类讨论是解题的关键,反证法是经常用到的方程.2.学校艺术节对同一类的A,B,C,D四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:甲说:“是C或D作品获得一等奖”;乙说:“B作品获得一等奖”;丙说:“A,D两项作品未获得一等奖”;丁说:“是C作品获得一等奖”.若这四位同学中只有两位说的话是对的,则获得一等奖的作品是.参考答案:B【考点】F4:进行简单的合情推理.【分析】根据学校艺术节对同一类的A,B,C,D四项参赛作品,只评一项一等奖,故假设A,B,C,D分别为一等奖,判断甲、乙、丙、丁的说法的正确性,即可判断.【解答】解:若A为一等奖,则甲,丙,丁的说法均错误,故不满足题意,若B为一等奖,则乙,丙说法正确,甲,丁的说法错误,故满足题意,若C为一等奖,则甲,丙,丁的说法均正确,故不满足题意,若D为一等奖,则只有甲的说法正确,故不合题意,故若这四位同学中只有两位说的话是对的,则获得一等奖的作品是B故答案为:B3.如图在△中,∥,,交于点,则图中相似三角形的对数为(
).A.1B.2 C.3 D.4参考答案:4.在三棱柱中,,侧棱的长为1,则该三棱柱的高为A.
B.
C.
D.参考答案:A略5.设,是两条不同的直线,,是两个不同的平面,下列命题中正确的是(
)A.若则
B.若则C.若则
D.若则参考答案:B6.函数的定义域为
(
)
A.(-3,1)
B.(1,3)
C.(-3,-1)
D.(-1,3)参考答案:A略7.已知点M(,0),椭圆+y2=1与直线y=k(x+)交于点A、B,则△ABM的周长为()A.4 B.8 C.12 D.16参考答案:B【考点】直线与圆锥曲线的关系.【分析】直线过定点,由椭圆定义可得AN+AM=2a=4,BM+BN=2a=4,由△ABM的周长为AB+BM+AM=(AN+AM)+(BN+BM),求出结果.【解答】解:直线过定点,由题设知M、N是椭圆的焦点,由椭圆定义知:AN+AM=2a=4,BM+BN=2a=4.△ABM的周长为AB+BM+AM=(AN+BN)+BM+AM=(AN+AM)+(BN+BM)=8,故选:B.8.若原点和点分别是双曲线的中心和左焦点,点P为双曲线右支上的任意一点,则的取值范围为(
)
A.
B.
C.
D.参考答案:A略9.直线mx+ny+3=0在y轴上的截距为﹣3,而且它的倾斜角是直线x﹣y=3倾斜角的2倍,则()A. B. C. D.参考答案:D【考点】直线的倾斜角;直线的截距式方程.【分析】对于直线mx+ny+3=0,令x=0求出y的值,即为直线在y轴上的截距,根据截距为﹣3求出n的值,再由已知直线的斜率求出倾斜角,确定出所求直线的倾斜角,求出所求直线的斜率,即可求出m的值.【解答】解:对于直线mx+ny+3=0,令x=0,得到y=﹣,即﹣=﹣3,解得:n=1,∵x﹣y﹣3=0的斜率为60°,∴直线mx+ny+3=0的倾斜角为120°,即斜率为﹣,∴﹣=﹣m=﹣,即m=.故选D10.如果a>b>0,那么下列不等式中不正确的是
()(A)(B)(C)(D)参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.与圆外切,且与直线相切的动圆圆心的轨迹方程是_________.参考答案:12.过点且垂直于直线的直线方程为
.参考答案:略13.已知满足约束条件,则的最大值为
.参考答案:略14.给定下列命题:①“若k>0,则方程x2+2x﹣k=0有实数根”的逆否命题;②“若A=B,则sinA=sinB”的逆命题;③“若2”的逆否命题;④“若xy=0,则x,y中至少有一个为零”的否命题.⑤“若”的逆命题.其中真命题的序号是
.参考答案:①③④【考点】命题的真假判断与应用.【专题】转化思想;简易逻辑.【分析】①由方程x2+2x﹣k=0有实数根,则△=4+4k≥0,解得k的范围,即可判断出真假,进而判断出其逆否命题具有相同的真假性;②原命题的逆命题为“若sinA=sinB,则A=B”,举例:取A=2π,B=π,即可判断出真假;③由,可得b<a<0,可得b2>ab,即可判断出真,进而其逆否命题具有相同的真假性;④原命题的逆命题为:“若x,y中至少有一个为零,则xy=0”是真命题,进而得到原命题的否命题具有相同的真假性.⑤原的逆命题为“若a<b<0,则>”,举例:取a=﹣2,b=﹣1,﹣2<﹣1<0,即可判断出真假.【解答】解:①由方程x2+2x﹣k=0有实数根,则△=4+4k≥0,解得k≥﹣1,因此“若k>0,则方程x2+2x﹣k=0有实数根”是真命题,其逆否命题也是真命题;②“若A=B,则sinA=sinB”的逆命题为“若sinA=sinB,则A=B”,是假命题例如:取A=2π,B=π;③由,可得b<a<0,∴b2>ab,因此“若2”是真命题,其逆否命题也是真命题;④“若xy=0,则x,y中至少有一个为零”的逆命题为:“若x,y中至少有一个为零,则xy=0”是真命题,因此原命题的否命题也是真命题.⑤“若”的逆命题为“若a<b<0,则>”是假命题,例如:取a=﹣2,b=﹣1,﹣2<﹣1<0,但是<.其中真命题的序号是①③④.故答案为:①③④.【点评】本题考查了简易逻辑的判定方法、命题之间真假性的关系、不等式的性质,考查了推理能力与计算能力,属于中档题.15.设等差数列的前n项和为,若,,则当取最小值时,n等于______参考答案:616.参考答案:略17.已知正四棱柱ABCD-A1B1C1D1中,AA1=2AB,E为AA1中点,则异面直线BE与CD1所成角的余弦值为______________.参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本大题12分)已知函数,,(1)求曲线在处的切线方程;(2)讨论函数g(x)的单调性(3)若对恒有成立,求实数b的取值范围.参考答案:解:(1),,切点坐标为(1,4),切线斜率为3∴所求切线方程为…………(3分)(2)当;
…………(7分)(3)问题等价于在恒成立.即在单增,在单减
…………(9分)法一)对恒成立恒成立记,∵,则,∴,
…………(12分)法2)由(2),不合题意; ,
……(10分)由
…………(12分)
19.(本小题满分8分)已知函数,若函数在上有3个零点,求实数的取值范围.参考答案:….(8分)
20.如图,边长为的正方形ADEF与梯形ABCD所在的平面互相垂直,其中AB∥CD,AB⊥BC,DC=BC=AB=1,点M在线段EC上.(Ⅰ)证明:平面BDM⊥平面ADEF;(Ⅱ)判断点M的位置,使得三棱锥B﹣CDM的体积为.参考答案:证明:(Ⅰ)∵DC=BC=1,DC⊥BC,∴BD=,∵AD=,AB=2,∴AD2+BD2=AB2,∴∠ADB=90°,∴AD⊥BD,∵平面ADEF⊥平面ABCD,ED⊥AD,平面ADEF∩平面ABCD=AD,∴ED⊥平面ABCD,∴BD⊥ED,∵AD∩DE=D,∴BD⊥平面ADEF,∵BD?平面BDM,∴平面BDM⊥平面ADEF;(Ⅱ)解:如图,在平面DMC内,过M作MN⊥DC,垂足为N,则MN∥ED,∵ED⊥平面ABCD,∴MN⊥平面ABCD,∵VB﹣CDM=VM﹣CDB=MN·S△BDC=,∴××1×1×MN=,∴MN=,∴,∴CM=CE,∴点M在线段CE的三等分点且靠近C处.
21.)如图,阴影部分区域是由函数图象,直线围成,求这阴影部分区域面积。参考答案:----------(5分)-----------------(9分)------------------------------(10分)解法二:所求面积是以长为,宽为了2的矩形的面积的一半,所以所求的面积为.
略22.(本小题满分12分)用总长14.8m的钢条制作一个长方形容器的框架,如果容器底面的一边比另一边长0.5m,那么高为多少时这个容器的容积最大?并求出最大容积。参考答案:解:设容器的高为xm,底面边长分别为ym,(y+0.5)m,则
4x+4y+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 北京市朝阳区北京中学2024-2025学年八年级上学期期中物理试卷(无答案)
- 沧州临港经济技术开发区东区支三路道路及配套项目环评报告表
- 2014-2020年全球IP电话机行业市场调研分析报告
- 2014-2018年糖蜜行业战略投资分析研究报告
- 2024至2030年中国抗静电PVC托盘数据监测研究报告
- 2012注册会计师考试审计真题及答案B卷
- 2011-2015年氯磺化聚乙烯运营态势及前景预测分析报告
- 2024至2030年中国对夹式双瓣止回阀数据监测研究报告
- 2024至2030年中国双流程板网组合式板式换热器行业投资前景及策略咨询研究报告
- 2024至2030年中国三色果冻机数据监测研究报告
- 物资的采购接、保、检、运措施
- 小学体育与健康人教二年级全一册第一部分课程目标与教学内容设计构想体育教学设计武术
- 广告制作技术方案
- 【课件】 我们怎样鉴赏美术作品 课件-2022-2023学年高中美术湘美版(2019)美术鉴赏
- 煤矿通风系统现状及智能通风系统设计
- 小学劳动教育 北师大版 三年级 活动《土豆成长我观察》 课件
- 加氢裂化 精品课件
- 2022年教师事业单位年度考核登记表个人总结
- 马克思主义“五观”教育
- 物理化学教案:第02章-多相多组分系统热力学-教案
- 储罐及管道防腐保温施工方案
评论
0/150
提交评论