版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年山西省运城市老城中学高三数学理测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设异面直线均与平面相交,则命题:①存在直线使或;②存在直线,使且;③存在直线使得与和所成的角相等,其中不正确的命题个数为A.0
B.1
C.2
D.3参考答案:答案:B2.已知互不相同的直线l,m,n和平面α,β,γ,则下列命题正确的是(
)A.若与为异面直线,,则
B.若.则
C.若,则
D.若.则参考答案:C若与为异面直线,,则与平行或相交,错,排除;若,则与平行或异面,错,排除;若,则或相交,错,排除,故选C.
3.设函数,若,则的值为(
)A.
B.
C.
D.
参考答案:D4.若不等式x2+2x+a≥-y2-2y对任意实数x、y都成立,则实数a的取值范围是
(
)A.a≥0
B.a≥1
C.a≥2
D.a≥3参考答案:C5.执行如图所示的程序框图,则输出的结果是()A.6 B.﹣6 C.5 D.﹣5参考答案:C【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:当i=1时,满足进行循环的条件,执行循环体后,S=﹣1,i=2;当i=2时,满足进行循环的条件,执行循环体后,S=1,i=3;当i=3时,满足进行循环的条件,执行循环体后,S=﹣2,i=4;当i=4时,满足进行循环的条件,执行循环体后,S=2,i=5;当i=5时,满足进行循环的条件,执行循环体后,S=﹣3,i=6;当i=6时,满足进行循环的条件,执行循环体后,S=3,i=7;当i=7时,满足进行循环的条件,执行循环体后,S=﹣4,i=8;当i=8时,满足进行循环的条件,执行循环体后,S=4,i=9;当i=9时,满足进行循环的条件,执行循环体后,S=﹣5,i=10;当i=10时,满足进行循环的条件,执行循环体后,S=5,i=11;当i=11时,不满足进行循环的条件,故输出S值为5,故选:C【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.6.已知函数,则“是奇函数”是“”的A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件参考答案:B略7.复数所对应的点位于复平面内
A.第一象限
B.第二象限
C.第三象限
D.第四象限参考答案:B8.一个空间几何体的正视图、侧视图均是长为2、高为3的矩形,俯
视图是直径为2的圆(如右图),则这个几何体的表面积为
A.12+
B.7
C.
D.参考答案:C9.设x=30.5,y=log32,z=cos2,则()A.z<y<x B.z<x<y C.y<z<x D.x<z<y参考答案:A【考点】对数值大小的比较.【分析】利用指数函数、对数函数、三角函数的性质求解.【解答】解:∵x=30.5=>1,0=log31<y=log32<log33=1,z=cos2<0,∴z<y<x.故选:A.【点评】本题考查三个数的大小的比较,是基础题,解题时要注意指数函数、对数函数、三角函数的性质的合理运用.10.已知等比数列{an}中,a2=1,则其前3项的和S3的取值范围是(
)A.B.
C.
D.参考答案:D略二、填空题:本大题共7小题,每小题4分,共28分11.
已知点(1,0)在直线的两侧,则下列说法
(1)
(2)时,有最小值,无最大值(3)恒成立
(4),,则的取值范围为(-其中正确的是
(把你认为所有正确的命题的序号都填上)参考答案:答案:(3)(4)12.已知,,则
.参考答案:试题分析:根据同角三角函数关系式,结合角的取值范围,可求得,根据诱导公式,可以求得.考点:同角三角函数关系式,诱导公式.13.已知,则_______.参考答案:8【分析】由题意可知表示二项式展开式中一次项的系数,利用二项式展开式的通项公式即可求出【详解】由题意可知表示二项式展开式中一次项系数,展开式的通项公式,当时,,【点睛】本题考查二项式展开式中某一项系数求法,熟练掌握展开式的通项公式是关键,属于基础题。14.盒中装有形状、大小完全相同的7个球,其中红色球4个,黄色球3个.若从中随机取出2个球,则所取出的2个球颜色不同的概率等于.
参考答案:15.函数的最小正周期为
__________.参考答案:16.在数列的每相邻两项之间插入此两项的积,形成新的数列,这样的操作叫做该数列的一次“扩展”.将数列1,2进行“扩展”,第一次得到1,2,2;第二次得到数列1,2,2,4,2;…;第n次“扩展”后得到的数列为.并记,其中,,则数列{an}的通项公式an=________.参考答案:【分析】先由,结合题意得到,再设求出,得到数列是首项为,公比为的等比数列,进而可求出结果.【详解】由题意,根据,可得,设,即,可得,则数列是首项为,公比为的等比数列,故,所以.故答案为【点睛】本题主要考查数列的应用,熟记等比数列的性质以及通项公式即可,属于常考题型.17.若函数为偶函数,则实数
参考答案:0略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题12分)在锐角△ABC中,角A,B,C的对边分别为a,b,c,已知,,且∥①求角B的大小
②若b=1,求△ABC面积的最大值。参考答案:1)∥,
,,,
B=。。。。。。。。。。5分2)
,,,当且仅当取等19.已知数列满足,.(1)若为递增数列,且成等差数列,求的值;(2)若,且是递增数列,是递减数列,求数列的通项公式.参考答案:20.(本小题满分12分)已知数列是递增的等比数列,满足,且的等差中项,数列满足,其前项和为,且(1)求数列,的通项公式(2)数列的前项和为,若不等式对一切恒成立,求实数的取值范围。参考答案:解(1)设等比数列的公比为则是的等差中项
依题意,数列为等差数列,公差又
......6分(2).
不等式化为......9分对一切恒成立。而当且仅当即时等式成立。
......12分
略21.如图,已知长方形中,,为的中点.将沿折起,使得平面平面.(I)求证:;
(II)若点是线段的中点,求二面角的余弦值.参考答案:22.(本小题满分12分)2014年11月12日,科幻片《星际穿越》上映,上映至今,全球累计票房高达6亿美金.为了解绵阳观众的满意度,某影院随机调查了本市观看此影片的观众,并用“10分制”对满意度进行评分,分数越高满意度越高,若分数不低于9分,则称该观众为“满意观众”.现从调查人群中随机抽取12名.如图所示的茎叶图记录了他们的满意度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶).(1)求从这12人中随机选取1人,该人不是“满意观众”的概率;(2)从本次所记录的满意度评分大于9.1的“满意观众”中随机抽取2人,求这2人得分不同的概率。参考答案:(1);(2)【知识点】茎叶图;列举法计算基本事件数及事件发生的概率.I2K2解析:(Ⅰ)由茎叶图可知,所抽取12人中有4人低于9分,即有4人不是“满意观众”,∴
P=,即从这12人中随机选取1人,该人不是“满意观众”的概率为.……4分(Ⅱ)设本次符合条件的满意观众分别为A1(9.2),A2(9.2),A3(9.2),A4(9.2),B1(9.3),B2(9.3),其中括号内为该人的分数.……………6分则从中任意选取两人的可能有(A1,A2),(A1,A3),(A1,A4),(A1,B1),(A1,B2),(A2,A3),(A2,A4),(A2,B1),(A2,B2),(A3,A4),(A3,B1),(A3,B2),(A4,B1),(A4,B2),(B1,B2),共15种,……8分其中,分数不同的有(A1,B1),(A1,B2),(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 幼儿玩具维修培训课件
- 2021年注册测绘师《测绘综合能力》考试题库(含答案)
- 统考版2025届高考英语一轮复习必修1Unit1Lifestyles教师用书教案北师大版
- 2024年太原客运资格证必考题答案
- 重庆三峡学院《酒店人力资源管理原理》2021-2022学年第一学期期末试卷
- 重庆人文科技学院《幼儿舞蹈表演及创编》2022-2023学年第一学期期末试卷
- 重庆人文科技学院《学前教育学》2021-2022学年第一学期期末试卷
- 重庆人文科技学院《西方音乐史》2023-2024学年第一学期期末试卷
- 重庆人文科技学院《程序设计与实践》2022-2023学年期末试卷
- 重庆三峡学院《计算机控制技术》2022-2023学年期末试卷
- 体育考研体育管理学36问
- 5G NR中SRS和CSI-RS信号学习笔记
- 预防与处理患者走失管理流程图
- 会议安全应急处置保障方案
- 丰田车系卡罗拉(双擎)轿车用户使用手册【含书签】
- 众兴实验小学教育教学视导工作汇报
- 洁净区人员行为规范要求
- 全国辖省市县乡镇全录
- 办公室用电安全检查记录表
- GB/T 31953-2023企业信用评价报告编制指南
- 大学武术智慧树知到答案章节测试2023年浙江大学
评论
0/150
提交评论