下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省潍坊市安丘临浯镇中心中学2023年高二数学文下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1..已知函数的图象过点(1,2),记,若数列{an}的前n项和为Sn,则Sn等于(
)A. B. C. D.参考答案:D【详解】分析:由函数的图象过点(1,2),求出,从而可得的通项公式,由裂项相消法可得结果.详解:因为函数的图象过点,所以,可得,,故选D.点睛:本题主要考查等差数列的通项与求和公式,以及裂项相消法求数列的和,属于中档题.裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1);(2);(3);(4);此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.11.如右图,该程序运行后输出的结果为.
A.36
B.56
C.55
D.45
参考答案:D略3.用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,假设正确的是()A.假设三内角都不大于60度B.假设三内角都大于60度C.假设三内角至多有一个大于60度D.假设三内角至多有两个大于60度参考答案:B【考点】R9:反证法与放缩法.【分析】一些正面词语的否定:“是”的否定:“不是”;“能”的否定:“不能”;“都是”的否定:“不都是”;“至多有一个”的否定:“至少有两个”;“至少有一个”的否定:“一个也没有”;“是至多有n个”的否定:“至少有n+1个”;“任意的”的否定:“某个”;“任意两个”的否定:“某两个”;“所有的”的否定:“某些”.【解答】解:根据反证法的步骤,假设是对原命题结论的否定,“至少有一个”的否定:“一个也没有”;即“三内角都大于60度”.故选B4.将函数的图象向右平移个单位,再将图象上每一点的横坐标缩短到原来的倍(纵坐标不变),所得图象关于直线对称,则的最小值为(
)
A.
B.
C.
D.参考答案:C5.设点是线段的中点,点在直线外,,,则=(
)A.8 B.4 C.2 D.1参考答案:C略6.若椭圆的离心率为,则双曲线的渐近线方程为(
)A.
B.
C.
D.
参考答案:A7.下列命题中正确的是
(
)A.的最小值是2
B.的最小值是2
C.的最小值是D.的最大值是参考答案:C略8.不共面的四个定点到平面的距离都相等,这样的平面共有
(A)3个
(B)4个
(C)6个
(D)7个参考答案:D9.在斜△ABC中,角A,B,C所对的边长分别为a,b,c,A=,sinA+sin(B﹣C)=2sin2C,且△ABC的面积为1,则a的值为()A.2 B. C. D.参考答案:B【考点】正弦定理.【分析】由sinA+sin(B﹣C)=2sin2C,利用和差公式、倍角公式展开可得sinB=2sinC,利用正弦定理可得b=2c.再利用余弦定理与三角形面积计算公式即可得出.【解答】解:在斜△ABC中,∵sinA+sin(B﹣C)=2sin2C,∴sinBcosC+cosBsinC+sinBcosC﹣cosBsinC=2sin2C,∴2sinBcosC=4sinCcosC∵cosC≠0,∴sinB=2sinC,∴b=2c.∵A=,∴由余弦定理可得:a2=(2c)2+c2﹣2×2c2cos=5c2.∵△ABC的面积为1,∴bcsinA=1,∴××sin=1,解得c2=1.则a=.故选:B.【点评】本题考查了正弦定理、余弦定理、和差公式、倍角公式、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.10.二次方程,有一个根比大,另一个根比小,则的取值范围是(
)A.
B.
C.
D.参考答案:C略二、填空题:本大题共7小题,每小题4分,共28分11.圆与圆的位置关系是_____________.
参考答案:相交略12.在△ABC中,已知c=2,∠A=120°,a=2,则∠B=.参考答案:30°【考点】正弦定理.【分析】先根据正弦定理利用题设条件求得sinC,进而求得C,最后利用三角形内角和求得B.【解答】解:由正弦定理可知=∴sinC=c?=2×=∴C=30°∴∠B=180°﹣120°﹣30°=30°故答案为:30°13.椭圆的长轴端点为M,N,不同于M,N的点P在此椭圆上,那么PM,PN的斜率之积为
.参考答案:14.如图所示的直观图,其原来平面图形的面积是
参考答案:415.直三棱柱ABC﹣A1B1C1中,∠ACB=90°,∠BAC=30°,BC=1,AA1=,M是CC1的中点,则异面直线AB1与A1M所成角为.参考答案:【考点】异面直线及其所成的角.【分析】连接AC1,利用三角函数计算结合题中数据证出∠AC1A1=∠A1MC1,从而矩形AA1C1C中A1M⊥AC1.再利用线面垂直的判定与性质,证出A1M⊥平面AB1C1,从而可得AB1⊥A1M,由此即可得到异面直线AB1与A1M所成的角.【解答】解:连接AC1∵∠ACB=90°,∠BAC=30°,BC=1,AA1=,∴A1C1=BC=,Rt△A1C1M中,tan∠A1MC1=;Rt△AA1C1中,tan∠AC1A1=∴tan∠MA1C1=tan∠AC1A1即∠AC1A1=∠A1MC1可得矩形AA1C1C中,A1M⊥AC1∵B1C1⊥A1C1,B1C1⊥CC1且AC1∩CC1=C1∴B1C1⊥平面AA1C1,∵A1M?面AA1C1,∴B1C1⊥A1M,又AC1∩B1C1=C1,∴A1M⊥平面AB1C1结合AB1?平面AB1C1,得到AB1⊥A1M,即异面直线AB1与A1M所成的角是.故答案为:.16.三个人坐在一排八个座位上,若每个人的两边都要有空位,则不同的坐法总数为__________参考答案:2880
略17.过点(,-),且与椭圆有相同焦点的椭圆标准方程为____________.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分13分)已知椭圆的离心率为,长轴长为.(Ⅰ)求椭圆C的标准方程;(Ⅱ)设为椭圆C的右焦点,T为直线上纵坐标不为的任意一点,过作的垂线交椭圆C于点P,Q.(ⅰ)若OT平分线段PQ(其中O为坐标原点),求的值;(ⅱ)在(ⅰ)的条件下,当最小时,求点T的坐标.参考答案:(1)由已知解得所以椭圆C的标准方程是.………………(3分)(2)(ⅰ)由(1)可得,F点的坐标是(2,0).设直线PQ的方程为x=my+2,将直线PQ的方程与椭圆C的方程联立,得消去x,得(m2+3)y2+4my-2=0,其判别式Δ=16m2+8(m2+3)>0.设P(x1,y1),Q(x2,y2),则.设M为PQ的中点,则M点的坐标为.
…………6分因为,所以直线FT的斜率为,其方程为.当时,,所以点的坐标为,此时直线OT的斜率为,其方程为.将M点的坐标为代入,得.解得.
………………8分(ⅱ)由(ⅰ)知T为直线上任意一点可得,点T点的坐标为.于是,
.
…………10分所以.
……………12分当且仅当,即m=±1时,等号成立,此时取得最小值.故当最小时,T点的坐标是(3,1)或(3,-1).
……………12分19.(坐标系与参数方程选做题)以极坐标系中的点为圆心,为半径的圆的直角坐标方程是
参考答案:略20.设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2bsinA(Ⅰ)求B的大小;(Ⅱ)若,c=5,求b.参考答案:【考点】HQ:正弦定理的应用;HS:余弦定理的应用.【分析】(1)根据正弦定理将边的关系化为角的关系,然后即可求出角B的正弦值,再由△ABC为锐角三角形可得答案.(2)根据(1)中所求角B的值,和余弦定理直接可求b的值.【解答】解:(Ⅰ)由a=2bsinA,根据正弦定理得sinA=2sinBsinA,所以,由△ABC为锐角三角形得.(Ⅱ)根据余弦定理,得b2=a2+c2﹣2accosB=27+25﹣45=7.所以,.【点评】本题主要考查正弦定理和余弦定理的应用.在解三角形中正余弦定理应用的很广泛,一定要熟练掌握公式.21.已知7件产品中有2件次品,现逐一不放回地进行检验,直到2件次品都能被确认为止.(I)求检验次数为4的概率;(II)设检验次数为,求的分布列和数学期望.参考答案:(Ⅰ)(Ⅱ)见解析【分析】(I)检验次数为的情况是前次在件正品中取到件,在件次品中取到件,第次取到次品,由此能求出检验次数为的概率;(II)的可能值为,分别计算出其对应的概率,由此能求出的分布列和的期望.【详解】解:(I)记“在次检验中,前次检验中有次得到次品,第次检验得到次品”为事件,则检验次数为的概率.(II)的可能值为,其中,,,,.的分布列为
的期望【点睛】本题主要考查概率的求法和离散型随机变量的概率分布列和数学期望.解题时要认真审题,注意概率的性质和排列组合数公式的运用.22.
写出下列程序运行的结果.(1)a=2
(2)x=100
i=1
i=1WHILE
i<=6
DO
a=a+1
x=x+10
i,a
i,x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 信阳师范大学《JavaWeb程序设计实验》2023-2024学年第一学期期末试卷
- 西北大学《量子力学》2023-2024学年第一学期期末试卷
- 机器人操作系统(ROS)课件10.2MoveIt!的使用
- 项目4 4.2 植物生产的水分调控(3)(课件)-《植物生产与环境》(高教版第4版)
- 《上期末复习建议》课件
- 《施工企业会计实操》课件
- 《整机焊接技术》课件
- 吉林省松原市扶余市2023-2024学年八年级上学期数学期末考试试卷
- 股东退股后对退股前所签定协议的约定
- 共享菜园协议书
- 电梯设备运行管理规范
- GB/T 28035-2011软件系统验收规范
- 介绍北京英文
- GB/T 20021-2017帆布芯耐热输送带
- GB/T 14846-2014铝及铝合金挤压型材尺寸偏差
- 医生、护士工作服技术参数要求
- GB 29518-2013柴油发动机氮氧化物还原剂尿素水溶液(AUS 32)
- 10028数学史2003年01月试卷
- 项目蓝图-sap pp详细方案设计
- 高中心理健康教育课件《我的人生我做主》
- 2023年江苏省环保集团有限公司校园招聘笔试题库及答案解析
评论
0/150
提交评论