2022-2023学年江苏省高邮市南海中学九年级数学第一学期期末统考试题含解析_第1页
2022-2023学年江苏省高邮市南海中学九年级数学第一学期期末统考试题含解析_第2页
2022-2023学年江苏省高邮市南海中学九年级数学第一学期期末统考试题含解析_第3页
2022-2023学年江苏省高邮市南海中学九年级数学第一学期期末统考试题含解析_第4页
2022-2023学年江苏省高邮市南海中学九年级数学第一学期期末统考试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列计算正确的是()A.3x﹣2x=1 B.x2+x5=x7C.x2•x4=x6 D.(xy)4=xy42.二次函数的图象与y轴的交点坐标是()A.(0,1) B.(1,0) C.(-1,0) D.(0,-1)3.下列各点中,在反比例函数图象上的点是A. B. C. D.4.小明沿着坡度为1:2的山坡向上走了10m,则他升高了()A.5m

B.2m

C.5m

D.10m5.如图,的外接圆的半径是.若,则的长为()A. B. C. D.6.已知一组数据2,3,4,x,1,4,3有唯一的众数4,则这组数据的中位数是()A.2 B.3 C.4 D.57.反比例函数与在同一坐标系的图象可能为()A. B. C. D.8.下列四种图案中,不是中心对称图形的为()A. B. C. D.9.下列运算中,正确的是().A. B. C. D.10.若抛物线y=ax2+2ax+4(a<0)上有A(-,y1),B(-

,y2),C(

,y3)三点,则y1,y2,y3的大小关系为()A.y1<y2<y3 B.y3<y2<y1 C.y3<y1<y2 D.y2<y3<y1二、填空题(每小题3分,共24分)11.如图,在Rt△ABC中,∠C=90°,CA=CB=1.分别以A、B、C为圆心,以AC为半径画弧,三条弧与边AB所围成的阴影部分的面积是______.12.如果抛物线y=﹣x2+(m﹣1)x+3经过点(2,1),那么m的值为_____.13.已知点P(a,b)在反比例函数y=的图象上,则ab=_____.14.如图三角形ABC是圆O的内接正三角形,弦EF经过BC边的中点D,且EF平行AB,若AB等于6,则EF等于________.15.点A(-2,y1),B(-1,y2)都在反比例函数y=-图象上,则y1_____________y2(选填“﹤”,“>”或”=”)16.若正多边形的每一个内角为,则这个正多边形的边数是__________.17.如图,在Rt△ABC中,∠C=90°,AB=10,AC=8,E是AC上一点,AE=5,ED⊥AB,垂足为D,求AD的长18.如图,AB是⊙O的直径,AC是⊙O的切线,连结OC交⊙O于点D,连结BD,∠C=30°,则∠ABD的度数是_____°.三、解答题(共66分)19.(10分)为推进“传统文化进校园”活动,我市某中学举行了“走进经典”征文比赛,赛后整理参赛学生的成绩,将学生的成绩分为四个等级,并将结果绘制成不完整的条形统计图和扇形统计图.请根据统计图解答下列问题:(1)参加征文比赛的学生共有人;(2)补全条形统计图;(3)在扇形统计图中,表示等级的扇形的圆心角为__图中;(4)学校决定从本次比赛获得等级的学生中选出两名去参加市征文比赛,已知等级中有男生一名,女生两名,请用列表或画树状图的方法求出所选两名学生恰好是一名男生和一名女生的概率.20.(6分)如图,AB是⊙O的直径,弦DE垂直半径OA,C为垂足,DE=6,连接DB,,过点E作EM∥BD,交BA的延长线于点M.(1)求的半径;(2)求证:EM是⊙O的切线;(3)若弦DF与直径AB相交于点P,当∠APD=45°时,求图中阴影部分的面积.21.(6分)如图,C地在A地的正东方向,因有大山阻隔,由A地到C地需要绕行B地,已知B地位于A地北偏东67°方向,距离A地520km,C地位于B地南偏东30°方向,若打通穿山隧道,建成两地直达高铁,求A地到C地之间高铁线路的长(结果保留整数)(参考数据:sin67°≈0.92;cos67°≈0.38;≈1.73)22.(8分)已知关于的一元二次方程

有实根.(1)求的取值范围;(2)求该方程的根.23.(8分)抛物线y=-2x2+8x-1.(1)用配方法求顶点坐标,对称轴;(2)x取何值时,y随x的增大而减小?24.(8分)在平面直角坐标系中,已知抛物线.(1)求抛物线的对称轴;(2)当时,设抛物线与轴交于两点(点在点左侧),顶点为,若为等边三角形,求的值;(3)过(其中)且垂直轴的直线与抛物线交于两点.若对于满足条件的任意值,线段的长都不小于1,结合函数图象,直接写出的取值范围.25.(10分)如图,点C在以AB为直径的半圆⊙O上,AC=BC.以B为圆心,以BC的长为半径画圆弧交AB于点D.(1)求∠ABC的度数;(2)若AB=4,求阴影部分的面积.26.(10分)某班级元旦晚会上,有一个闯关游戏,在一个不透明的布袋中放入3个乒乓球,除颜色外其它都相同,它们的颜色分别是绿色、黄色和红色.搅均后从中随意地摸出一个乒乓球,记下颜色后放回,搅均后再从袋中随意地摸出一个乒乓球,如果两次摸出的球的颜色相同,即为过关.请用画树状图或列表法求过关的概率.

参考答案一、选择题(每小题3分,共30分)1、C【分析】分别根据合并同类项的法则,同底数幂的乘法法则,幂的乘方与积的乘方逐一判断即可.【详解】解:3x﹣2x=x,故选项A不合题意;x2与x5不是同类项,故不能合并,故选项B不合题意;x2•x4=x6,正确,故选项C符合题意;,故选项D不合题意.故选:C.【点睛】本题主要考查了合并同类项,同底数幂的乘法以及幂的乘方与积的乘方,熟练掌握运算法则是解答本题的关键.2、D【详解】当x=0时,y=0-1=-1,∴图象与y轴的交点坐标是(0,-1).故选D.3、B【分析】把各点的坐标代入解析式,若成立,就在函数图象上.即满足xy=2.【详解】只有选项B:-1×(-2)=2,所以,其他选项都不符合条件.故选B【点睛】本题考核知识点:反比例函数的意义.解题关键点:理解反比例函数的意义.4、B【详解】解:由题意得:BC:AB=1:2,设BC=x,AB=2x,则AC===x=10,解得:x=2.故选B.5、A【分析】由题意连接OA、OB,根据圆周角定理求出∠AOB,利用勾股定理进行计算即可.【详解】解:连接OA、OB,由圆周角定理得:∠AOB=2∠C=90°,所以的长为.故选:A.【点睛】本题考查的是三角形的外接圆和外心的概念和性质,掌握圆周角定理和勾股定理是解题的关键.6、B【分析】根据题意由有唯一的众数4,可知x=4,然后根据中位数的定义求解即可.【详解】∵这组数据有唯一的众数4,∴x=4,∵将数据从小到大排列为:1,2,1,1,4,4,4,∴中位数为:1.故选B.【点睛】本题考查了众数、中位数的定义,属于基础题,掌握基本定义是关键.众数是一组数据中出现次数最多的那个数.当有奇数个数时,中位数是从小到大排列顺序后位于中间位置的数;当有偶数个数时,中位数是从小到大排列顺序后位于中间位置两个数的平均数.7、B【分析】根据反比例函数和一次函数的性质逐个对选项进行分析即可.【详解】A根据反比例函数的图象可知,k>0,因此可得一次函数的图象应该递减,但是图象是递增的,所以A错误;B根据反比例函数的图象可知,k>0,,因此一次函数的图象应该递减,和图象吻合,所以B正确;C根据反比例函数的图象可知,k<0,因此一次函数的图象应该递增,并且过(0,1)点,但是根据图象,不过(0,1),所以C错误;D根据反比例函数的图象可知,k<0,因此一次函数的图象应该递增,但是根据图象一次函数的图象递减,所以D错误.故选B【点睛】本题主要考查反比例函数和一次函数的性质,关键点在于系数的正负判断,根据系数识别图象.8、D【分析】根据中心对称图形的定义逐个判断即可.【详解】解:A、是中心对称图形,故本选项不符合题意;

B、是中心对称图形,故本选项不符合题意;

C、是中心对称图形,故本选项符合题意;

D、不是中心对称图形,故本选项符合题意;故选D.【点睛】本题考查了对中心对称图形的定义,判断中心对称图形的关键是旋转180°后能够重合.能熟知中心对称图形的定义是解此题的关键.9、C【解析】试题分析:3a和2b不是同类项,不能合并,A错误;和不是同类项,不能合并,B错误;,C正确;,D错误,故选C.考点:合并同类项.10、C【分析】根据抛物线y=ax2+2ax+4(a<0)可知该抛物线开口向下,可以求得抛物线的对称轴,又因为抛物线具有对称性,从而可以解答本题.【详解】解:∵抛物线y=ax2+2ax+4(a<0),∴对称轴为:x=,∴当x<−1时,y随x的增大而增大,当x>−1时,y随x的增大而减小,∵A(−,y1),B(−,y2),C(,y3)在抛物线上,且−<−,−0.5<,∴y3<y1<y2,故选:C.【点睛】本题考查二次函数的性质,解题的关键是明确二次函数具有对称性,在对称轴的两侧它的增减性不一样.二、填空题(每小题3分,共24分)11、1【分析】三条弧与边AB所围成的阴影部分的面积=三角形的面积-三个小扇形的面积.【详解】解:阴影部分的面积为:1×1÷1---=1-.故答案为1-.【点睛】本题主要考查了扇形的面积计算,关键是理解阴影部分的面积=三角形的面积-三个小扇形的面积.12、2【分析】把点(2,1)代入y=﹣x2+(m﹣1)x+3,即可求出m的值.【详解】∵抛物线y=﹣x2+(m﹣1)x+3经过点(2,1),∴1=-4+2(m-1)+3,解得m=2,故答案为2.【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键是找出二次函数图象上的点的坐标满足的关系式.13、2【解析】接把点P(a,b)代入反比例函数y=即可得出结论.【详解】∵点P(a,b)在反比例函数y=的图象上,∴b=,∴ab=2,故答案为:2.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.14、【分析】设AC与EF交于点G,由于EF∥AB,且D是BC中点,易得DG是△ABC的中位线,即DG=3;易知△CDG是等腰三角形,可过C作AB的垂线,交EF于M,交AB于N;然后证DE=FG,根据相交弦定理得BD•DC=DE•DF,而BD、DC的长易知,DF=3+DE,由此可得到关于DE的方程,即可求得DE的长,EF=DF+DE=3+2DE,即可求得EF的长;【详解】解:如图,过C作CN⊥AB于N,交EF于M,则CM⊥EF,根据圆和等边三角形的性质知:CN必过点O,∵EF∥AB,D是BC的中点,∴DG是△ABC的中位线,即DG=AB=3;∵∠ACB=60°,BD=DC=BC,AG=GC=AC,且BC=AC,∴△CGD是等边三角形,∵CM⊥DG,∴DM=MG;∵OM⊥EF,由垂径定理得:EM=MF,故DE=GF,∵弦BC、EF相交于点D,∴BD×DC=DE×DF,即DE×(DE+3)=3×3;解得DE=或(舍去);∴EF=3+2×=;【点睛】本题主要考查了相交弦定理,等边三角形的性质,三角形中位线定理,垂径定理,掌握相交弦定理,等边三角形的性质,三角形中位线定理,垂径定理是解题的关键.15、<【分析】根据反比例函数的增减性和比例系数的关系即可判断.【详解】解:∵﹣3<0∴反比例函数y=-在每一象限内,y随x的增大而增大∵-2<-1<0∴y1<y2故答案为:<.【点睛】此题考查的是反比例函数的增减性,掌握反比例函数的增减性与比例系数的关系是解决此题的关键.16、八(或8)【解析】分析:根据正多边形的每一个内角为,求出正多边形的每一个外角,根据多边形的外角和,即可求出正多边形的边数.详解:根据正多边形的每一个内角为,正多边形的每一个外角为:多边形的边数为:故答案为八.点睛:考查多边形的外角和,掌握多边形的外角和是解题的关键.17、AD=1【分析】通过证明△ADE∽△ACB,可得,即可求解.【详解】解:∵∠C=∠ADE=90°,∠A=∠A,∴△ADE∽△ACB,∴∴,∴AD=1.【点睛】本题考查了相似三角形的判定与性质定理,熟练掌握定理是解题的关键.18、30°【分析】根据切线的性质求出∠OAC,结合∠C=30°可求出∠AOC,根据等腰三角形性质求出∠B=∠BDO,根据三角形外角性质求出即可.【详解】解:∵AC是⊙O的切线,∴∠OAC=90°,∵∠C=30°,∴∠AOC=90°﹣30°=60°,∵OB=OD,∴∠ABD=∠BDO,∵∠ABD+∠BDO=∠AOC,∴∠ABD=AOC=30°,故答案为:30°.【点睛】本题考查了切线的性质,三角形外角性质,三角形内角和定理,等腰三角形性质的应用,解此题的关键是求出∠AOC的度数.三、解答题(共66分)19、(1)30;(2)图见解析;(3)144°,30;(4).【分析】(1)根据等级为A的人数除以所占的百分比即可求出总人数;(2)根据条形统计图得出A、C、D等级的人数,用总人数减A、C、D等级的人数即可;(3)计算C等级的人数所占总人数的百分比,即可求出表示等级的扇形的圆心角和的值;(4)利用列表法或树状图法得出所有等可能的情况数,找出一名男生和一名女生的情况数,即可求出所求的概率.【详解】解:(1)根据题意得成绩为A等级的学生有3人,所占的百分比为10%,则3÷10%=30,即参加征文比赛的学生共有30人;(2)由条形统计图可知A、C、D等级的人数分别为3人、12人、6人,则30−3−12−6=9(人),即B等级的人数为9人补全条形统计图如下图(3),,∴m=30(4)依题意,列表如下:男女女男(男,女)(男,女)女(男,女)(女,女)女(男,女)(女,女)由上表可知总共有6种结果,每种结果出现的可能性相同,其中所选两名学生恰好是一男一女的结果共有4种,所以;或树状图如下由上图可知总共有6种结果,每种结果出现的可能性相同,其中所选两名学生恰好是一男一女的结果共有4种,所以.【点睛】本题考查了条形统计图、扇形统计图以及利用列表法或者树状图法求概率,弄清题意是解题的关键.20、⑴OE=2;⑵见详解⑶【分析】(1)连结OE,根据垂径定理可以得到,得到∠AOE=60º,OC=OE,根据勾股定理即可求出.(2)只要证明出∠OEM=90°即可,由(1)得到∠AOE=60º,根据EM∥BD,∠B=∠M=30°,即可求出.(3)连接OF,根据∠APD=45°,可以求出∠EDF=45º,根据圆心角为2倍的圆周角,得到∠BOE,用扇形OEF面积减去三角形OEF面积即可.【详解】(1)连结OE∵DE垂直OA,∠B=30°∴CE=DE=3,∴∠AOE=2∠B=60º,∴∠CEO=30°,OC=OE由勾股定理得OE=(2)∵EM∥BD,∴∠M=∠B=30º,∠M+∠AOE=90º∴∠OEM=90º,即OE⊥ME,∴EM是⊙O的切线(3)再连结OF,当∠APD=45º时,∠EDF=45º,∴∠EOF=90ºS阴影==【点睛】本题主要考查了圆的切线判定、垂径定理、平行线的性质定理以及扇形面积的简单计算,熟记概念是解题的关键.21、A地到C地之间高铁线路的长为592km.【分析】过点B作BD⊥AC于点D,利用锐角三角函数的定义求出AD及CD的长,进而可得出结论.【详解】过点B作BD⊥AC于点D,∵B地位于A地北偏东67°方向,距离A地520km,∴∠ABD=67°,∴AD=AB•sin67°=520×0.92=478.4km,BD=AB•cos67°=520×0.38=197.6km.∵C地位于B地南偏东30°方向,∴∠CBD=30°,∴CD=BD•tan30°=197.6×≈113.9km,∴AC=AD+CD=478.4+113.9≈592(km).答:A地到C地之间高铁线路的长为592km.【点睛】考查了解直角三角形的应用-方向角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,需要熟记锐角三角函数的定义.22、(1);(2)【分析】(1)根据根的判别式,列不等式求出k的取值范围即可.(2)用公式法解方程即可.【详解】(1)由一元二次方程有实数根,可以得出≥1,即(-2)2-4(k+1)≥1,解得:k≤1.(2),x==.【点睛】本题主要考查根的判别式以及公式法解一元二次方程的方法,熟记根的判别式以及一元二次方程解得公式是解题关键.23、(1)(2,2),x=2(2)当x≥2时,y随x的增大而减小【解析】(1)利用配方法将抛物线解析式边形为y=-2(x-2)2+2,由此即可得出抛物线的顶点坐标以及抛物线的对称轴;(2)由a=-2<0利用二次函数的性质即可得出:当x≥2时,y随x的增大而减小,此题得解.【详解】(1)∵y=-2x2+8x-1=-2(x2-4x)-1=-2(x2-4x+4)+8-1=-2(x-2)2+2,∴该抛物线的顶点坐标为(2,2),对称轴为直线x=2.(2)∵a=-2<0,∴当x≥2时,y随x的增大而减小.【点睛】本题考查了二次函数的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论