版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.已知⊙O的半径是4,OP=5,则点P与⊙O的位置关系是()A.点P在圆上 B.点P在圆内 C.点P在圆外 D.不能确定2.四条线段a,b,c,d成比例,其中b=3cm,c=8cm,d=12cm,则a=()A.2cm B.4cm C.6cm D.8cm3.将抛物线y=x2﹣2向上平移1个单位后所得新抛物线的表达式为()A.y=﹣1 B.y=﹣3 C.y=﹣2 D.y=﹣24.已知抛物线y=x2+(2a+1)x+a2﹣a,则抛物线的顶点不可能在()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容.如图,已知与相切于点,点在上.求证:.证明:连接并延长,交于点,连接.∵与相切于点,∴,∴.∵@是的直径,∴(直径所对的圆周角是90°),∴,∴◎.∵,∴▲(同弧所对的※相等),∴.下列选项中,回答正确的是()A.@代表 B.◎代表 C.▲代表 D.※代表圆心角6.如图,中,,若,,则边的长是()A.2 B.4 C.6 D.87.如图,已知△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°得到△A′B′C′的位置,连接C′B,则C′B的长为()A.2- B. C. D.18.下列数是无理数的是()A. B. C. D.9.下列说法:①概率为0的事件不一定是不可能事件;②试验次数越多,某情况发生的频率越接近概率;③事件发生的概率与实验次数无关;④在抛掷图钉的试验中针尖朝上的概率为,表示3次这样的试验必有1次针尖朝上.其中正确的是()A.①② B.②③ C.①③ D.①④10.下列事件中是随机事件的是()A.校运会上立定跳远成绩为10米B.在只装有5个红球的袋中,摸出一个红球C.慈溪市明年五一节是晴天D.在标准大气压下,气温3°C时,冰熔化为水11.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互增了182件.如果全组共有x名同学,则根据题意列出的方程是().A.x(x+1)=182 B.x(x+1)=182×C.x(x-1)=182 D.x(x-1)=182×212.如图,反比例函数y=的图象与一次函数y=kx+b的图象相交于点A,B,已知点A的坐标为(-2,1),点B的纵坐标为-2,根据图象信息可得关于x的方程=kx+b的解为()A.-2,1 B.1,1 C.-2,-2 D.无法确定二、填空题(每题4分,共24分)13.在一个不透明的口袋中,装有一些除颜色外完全相同的红、白、黑三种颜色的小球.己知袋中有红球5个,白球23个,且从袋中随机摸出一个红球的概率是,则袋中黑球的个数为__________.14.把配方成的形式为__________.15.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径是4,sinB=,则线段AC的长为.16.如图,在平面直角坐标系中,已知点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是______.17.如图,C、D是AB为直径的半圆O上的点,若∠BAD=50°,则∠BCD=_____.18.把抛物线的顶点E先向左平移3个单位,再向上平移4个单位后刚好落在同一平面直角坐标系的双曲线上,那么=__________三、解答题(共78分)19.(8分)如图,点F为正方形ABCD内一点,△BFC绕点B逆时针旋转后与△BEA重合(1)求△BEF的形状(2)若∠BFC=90°,说明AE∥BF20.(8分)在一个不透明的盒子中装有4张卡片.4张卡片的正面分别标有数字1,2,3,4,这些卡片除数字外都相同,将卡片搅匀.(1)从盒子任意抽取一张卡片,恰好抽到标有奇数卡片的概率是:;(2)先从盒子中任意抽取一张卡片,再从余下的3张卡片中任意抽取一张卡片,求抽取的2张卡片标有数字之和大于4的概率(请用画树状图或列表等方法求解).21.(8分)计算:(1)sin260°﹣tan30°•cos30°+tan45°(2)cos245°+sin245°+sin254°+cos254°22.(10分)某课桌生产厂家研究发现,倾斜12°至24°的桌面有利于学生保持躯体自然姿势.根据这一研究,厂家决定将水平桌面做成可调节角度得桌面.新桌面的设计图如图1,可绕点旋转,在点处安装一根长度一定且处固定,可旋转的支撑臂,.(1)如图2,当时,,求支撑臂的长;(2)如图3,当时,求的长.(结果保留根号)(参考数据:,,,)23.(10分)如果三角形有一边上的中线恰好等于这边的长,那么称这个三角形为“匀称三角形”,这条中线为“匀称中线”.(1)如图①,在Rt△ABC中,∠C=90°,AC>BC,若Rt△ABC是“匀称三角形”.①请判断“匀称中线”是哪条边上的中线,②求BC:AC:AB的值.(2)如图②,△ABC是⊙O的内接三角形,AB>AC,∠BAC=45°,S△ABC=2,将△ABC绕点A逆时针旋转45°得到△ADE,点B的对应点为D,AD与⊙O交于点M,若△ACD是“匀称三角形”,求CD的长,并判断CM是否为△ACD的“匀称中线”.24.(10分)2019年11月26日,鲁南高铁正式开通运营.鲁南高铁临沂段修建过程中需要经过一座小山.如图,施工方计划沿AC方向挖隧道,为了加快施工速度,要在小山的另一侧D(A、C、D共线)处同时施工.测得∠CAB=30°,,∠ABD=105°,求AD的长.25.(12分)八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个类型,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.类别频数(人数)频率小说0.5戏剧4散文100.25其他6合计1根据图表提供的信息,解答下列问题:(1)八年级一班有多少名学生?(2)请补全频数分布表,并求出扇形统计图中“其他”类所占的百分比;(3)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出2名同学参加学校的戏剧兴趣小组,请用画树状图或列表法的方法,求选取的2人恰好是乙和丙的概率.26.已知:如图,C,D是以AB为直径的⊙O上的两点,且OD∥BC.求证:AD=DC.
参考答案一、选择题(每题4分,共48分)1、C【分析】根据“点到圆心的距离大于半径,则点在圆外”即可解答.【详解】解:∵⊙O的半径是4,OP=5,5>4即点到圆心的距离大于半径,∴点P在圆外,故答案选C.【点睛】本题考查了点与圆的位置关系,通过比较点到圆心的距离与半径的大小确定点与圆的位置关系.2、A【解析】由四条线段a、b、c、d成比例,根据比例线段的定义,即可得,又由b=3cm,c=8cm,d=12cm,即可求得a的值.【详解】∵四条线段a、b、c、d成比例,∴∵b=3cm,c=8cm,d=12cm,
∴
解得:a=2cm.
故答案为A.【点睛】此题考查了比例线段的定义.解题的关键是熟记比例线段的概念.3、A【分析】根据“上加下减,左加右减”的原则进行解答即可.【详解】解:将抛物线y=x2﹣2向上平移1个单位后所得新抛物线的表达式为y=x2﹣2+1,即y=x2﹣1.故选:A.【点睛】本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.4、D【分析】求得顶点坐标,得出顶点的横坐标和纵坐标的关系式,即可求得.【详解】抛物线y=x2+(2a+1)x+a2﹣a的顶点的横坐标为:x=﹣=﹣a﹣,纵坐标为:y==﹣2a﹣,∴抛物线的顶点横坐标和纵坐标的关系式为:y=2x+,∴抛物线的顶点经过一二三象限,不经过第四象限,故选:D.【点睛】本题考查了二次函数的性质,得到顶点的横纵坐标的关系式是解题的关键.5、B【分析】根据圆周角定理和切线的性质以及余角的性质判定即可.【详解】解:由证明过程可知:A:@代表AE,故选项错误;B:由同角的余角相等可知:◎代表,故选项正确;C和D:由同弧所对的圆周角相等可得▲代表∠E,※代表圆周角,故选项错误;故选B.【点睛】本题考查了切线的性质,圆周角定理,余角的性质等知识点,熟记知识点是解题的关键.6、C【分析】由,∠A=∠A,得∆ABD~∆ACB,进而得,求出AC的值,即可求解.【详解】∵,∠A=∠A,∴∆ABD~∆ACB,∴,即:,∴AC=8,∴CD=AC-AD=8-2=6,故选C.【点睛】本题主要考查相似三角形的判定和性质定理,掌握相似三角形的判定定理,是解题的关键.7、C【分析】如图,连接BB′,延长BC′交AB′于点D,证明△ABC′≌△B′BC′,得到∠DBB′=∠DBA=30°;求出BD、C′D的长,即可解决问题.【详解】解:如图,连接BB′,延长BC′交AB′于点D,
由题意得:∠BAB′=60°,BA=B′A,
∴△ABB′为等边三角形,
∴∠ABB′=60°,AB=B′B;
在△ABC′与△B′BC′中,∴△ABC′≌△B′BC′(SSS),
∴∠DBB′=∠DBA=30°,
∴BD⊥AB′,且AD=B′D,∵AC=BC=,∴,∴,,,.故选:C.【点睛】本题考查旋转的性质,全等三角形的性质和判定,等边三角形的判定与性质,等腰直角三角形的性质,直角三角形斜边上的中线.作辅助线构造出全等三角形并求出BC′在等边三角形的高上是解题的关键,也是本题的难点.8、C【分析】根据无理数的定义进行判断即可.【详解】A.,有理数;B.,有理数;C.,无理数;D.,有理数;故答案为:C.【点睛】本题考查了无理数的问题,掌握无理数的定义是解题的关键.9、B【分析】根据概率和频率的概念对各选项逐一分析即可.【详解】①概率为0的事件是不可能事件,①错误;②试验次数越多,某情况发生的频率越接近概率,故②正确;③事件发生的概率是客观存在的,是确定的数值,故③正确;④根据概率的概念,④错误.故选:B【点睛】本题考查概率的意义,考查频率与概率的关系,本题是一个概念辨析问题.10、C【分析】根据随机事件的定义,就是可能发生也可能不发生的事件进行判断即可.【详解】解:A.“校运会上立定跳远成绩为10米”是不可能事件,因此选项A不符合题意;B.“在只装有5个红球的袋中,摸出一个红球”是必然事件,因此选项B不符合题意;C.“慈溪市明年五一节是晴天”可能发生,也可能不发生,是随机事件,因此选项C符合题意;D.“在标准大气压下,气温3°C时,冰熔化为水”是必然事件,因此选项D不符合题意;故选:C.【点睛】本题考查了随机事件、必然事件、不可能事件的定义,理解随机事件的定义是解题的关键.11、C【解析】试题分析:先求每名同学赠的标本,再求x名同学赠的标本,而已知全组共互赠了182件,故根据等量关系可得到方程.每名同学所赠的标本为:(x-1)件,那么x名同学共赠:x(x-1)件,根据题意可列方程:x(x-1)=182,故选C.考点:本题考查的是根据实际问题列一元二次方程点评:找到关键描述语,找到等量关系,然后准确的列出方程是解答本题的关键.12、A【分析】所求方程的解即为两个交点A、B的横坐标,由于点A的横坐标已知,故只需求出点B的横坐标即可,亦即求出反比例函数的解析式即可,由于点A坐标已知,故反比例函数的解析式可求,问题得解.【详解】解:把点A(﹣1,1)代入,得m=﹣1,∴反比例函数的解析式是,当y=﹣1时,x=1,∴B的坐标是(1,﹣1),∴方程=kx+b的解是x1=1,x1=﹣1.故选:A.【点睛】本题考查了求直线与双曲线的交点和待定系数法求反比例函数的解析式,属于常考题型,明确两个函数交点的横坐标是对应方程的解是关键.二、填空题(每题4分,共24分)13、1【分析】袋中黑球的个数为,利用概率公式得到,然后利用比例性质求出即可.【详解】解:设袋中黑球的个数为,根据题意得,解得,即袋中黑球的个数为个.故答案为:1.【点睛】本题主要考查概率的计算问题,关键在于根据题意对概率公式的应用.14、【分析】对二次函数进行配方,即可得到答案.【详解】===.故答案是:.【点睛】本题主要考查二次函数的顶点式,掌握二次函数的配方,是解题的关键.15、1.【分析】连结CD如图,根据圆周角定理得到∠ACD=90°,∠D=∠B,则sinD=sinB=,然后在Rt△ACD中利用∠D的正弦可计算出AC的长.【详解】解:连结CD,如图,∵AD是⊙O的直径,∴∠ACD=90°,∵∠D=∠B,∴sinD=sinB=,在Rt△ACD中,∵sinD==,∴AC=AD=×8=1.故答案为1.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了解直角三角形.16、1【分析】首先证明AB=AC=a,根据条件可知PA=AB=AC=a,求出⊙D上到点A的最大距离即可解决问题.【详解】∵A(1,0),B(1﹣a,0),C(1+a,0)(a>0),∴AB=1﹣(1﹣a)=a,CA=a+1﹣1=a,∴AB=AC,∵∠BPC=90°,∴PA=AB=AC=a,如图延长AD交⊙D于P′,此时AP′最大,∵A(1,0),D(4,4),∴AD=5,∴AP′=5+1=1,∴a的最大值为1.故答案为1.【点睛】圆外一点到圆上一点的距离最大值为点到圆心的距离加半径,最小值为点到圆心的距离减去半径.17、130°【分析】根据圆周角定理和圆内接四边形的性质得出∠BAD+∠BCD=180°,代入求出即可.【详解】∵C、D是AB为直径的半圆O上的点,∴∠BAD+∠BCD=180°.∵∠BAD=50°,∴∠BCD=130°.故答案为:130°.【点睛】本题考查了圆周角定理和圆内接四边形的性质,能根据圆内接四边形的性质得出∠BAD+∠BCD=180°是解答本题的关键.18、﹣1【分析】根据题意得出顶点E坐标,利用平移的规律得出移动后的点的坐标,进而代入反比例函数即可求出k的值.【详解】解:由题意可知抛物线的顶点E坐标为(1,-2),把点E(1,-2)先向左平移3个单位,再向上平移1个单位所得对应点的坐标为(-2,2),∵点(-2,2)在双曲线上,∴k=-2×2=-1.故答案为:-1.【点睛】本题考查二次函数图象与几何变换和二次函数的性质以及待定系数法求反比例函数的解析式,根据题意求得平移后的顶点坐标是解题的关键.三、解答题(共78分)19、(1)等腰直角三角形(2)见解析【分析】(1)利用正方形的性质得BA=BC,∠ABC=90°,然后根据旋转的定义可判断旋转中心为点B,旋转角为90°,根据旋转的性质得∠EBF=∠ABC=90°,BE=BF,则可判断△BEF为等腰直角三角形;(2)根据旋转的性质得∠BEA=∠BFC=90°,从而根据平行线的判定方法可判断AE∥BF.【详解】(1)△BEF为等腰直角三角形,理由如下:∵四边形ABCD为正方形,∴BA=BC,∠ABC=90°,∵△BFC逆时针旋转后能与△BEA重合,∴旋转中心为点B,∠CBA为旋转角,即旋转角为90°;∵△BFC逆时针旋转后能与△BEA重合,∴∠EBF=∠ABC=90°,BE=BF,∴△BEF为等腰直角三角形;(2)∵△BFC逆时针旋转后能与△BEA重合,∴∠BEA=∠BFC=90°,∴∠BEA+∠EBF=180°,∴AE∥BF.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.20、(1);(2).【解析】(1)共4张卡片,奇数卡片有2张,利用概率公式直接进行计算即可;(2)画出表格,数出总情况数,数出抽取的2张卡片标有数字之和大于4的情况数,再利用概率公式进行计算即可【详解】(1)共4张卡片,奇数卡片有2张,所以恰好抽到标有奇数卡片的概率是(2)表格如下一共有12种情况,其中2张卡片标有数字之和大于4的有8种情况,所以答:从盒子任意抽取一张卡片,恰好抽到标有奇数卡片的概率是,抽取的2张卡片标有数字之和大于4的概率为.【点睛】本题主要考查利用画树状图或列表求概率问题,本题关键在于能够列出表格21、(1);(2)2.【解析】根据特殊角的锐角三角函数的值即可求出答案.【详解】(1)原式=()2﹣×+1=﹣+1=,(2)原式=(cos²45°+sin²45°)+(sin²54°+cos²54°)=1+1=2【点睛】本题考查了锐角三角函数的定义,解题的关键是熟练运用特殊角的锐角三角函数的定义.22、(1)12cm;(2)12+6或12−6.【分析】(1)利用锐角三角函数关系得出,进而求出CD即可;(2)利用锐角三角函数关系得出,再由勾股定理求出DE、AE的值,即可求出AD的长度.【详解】解:(1)∵∠BAC=24°,,∴∴,∴支撑臂的长为12cm(2)如图,过点C作CE⊥AB,于点E,当∠BAC=12°时,∴∴∵CD=12,∴由勾股定理得:,∴AD的长为(12+6)cm或(12−6)cm【点睛】本题考查了解直角三角形的应用,熟练运用三角函数关系是解题关键.23、(1)①“匀称中线”是BE,它是AC边上的中线,②BC:AC:AB=;(2)CD=a,CM不是△ACD的“匀称中线”.理由见解析.【分析】(1)①先作出Rt△ABC的三条中线AD、BE、CF,然后利用匀称中线的定义分别验证即可得出答案;②设AC=2a,利用勾股定理分别把BC,AB的长度求出来即可得出答案.(2)由②知:AC:AD:CD=,设AC=,则AD=2a,CD=,过点C作CH⊥AB,垂足为H,利用的面积建立一个关于a的方程,解方程即可求出CD的长度;假设CM是△ACD的“匀称中线”,看能否与已知的定理和推论相矛盾,如果能,则说明假设不成立,如果不能推出矛盾,说明假设成立.【详解】(1)①如图①,作Rt△ABC的三条中线AD、BE、CF,∵∠ACB=90°,∴CF=,即CF不是“匀称中线”.又在Rt△ACD中,AD>AC>BC,即AD不是“匀称中线”.∴“匀称中线”是BE,它是AC边上的中线,②设AC=2a,则CE=a,BE=2a,在Rt△BCE中∠BCE=90°,∴BC=,在Rt△ABC中,AB=,∴BC:AC:AB=(2)由旋转可知,∠DAE=∠BAC=45°.AD=AB>AC,∴∠DAC=∠DAE+∠BAC=90°,AD>AC,∵Rt△ACD是“匀称三角形”.由②知
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公司并购案例分析 吉利 沃尔沃
- 学练优秋季版七年级道德与法治下册1.3.2青
- 古诗词诵读《静女》课件 2024-2025学年统编版高中语文必修上册
- 2025届河南省新乡市第三中学高考语文五模试卷含解析
- 2025届四川省成都外国语高级中学高三第一次调研测试英语试卷含解析
- 2025届内蒙古包头六中高三下学期第五次调研考试数学试题含解析
- 北京海淀外国语2025届高三考前热身英语试卷含解析
- 广东省广州市番禺区禺山中学2025届高三二诊模拟考试英语试卷含解析
- 广东省五校2025届高三适应性调研考试语文试题含解析
- 八年级政治回眸传统课件
- DB13-T 2092-2014 河北省特种设备使用安全管理规范
- 安保服务评分标准
- it顾问合同模板
- 2024年铁塔租赁土地协议书模板
- 追觅科技在线测评逻辑题
- 第二章微专题:气体变质量问题 教学设计-2023-2024学年高二下学期物理人教版(2019)选择性必修第三册
- CMOS-模拟集成电路课件完整
- 2024-2025学年五年级科学上册第一单元《光》测试卷(教科版)
- 2024-2030年中国养生壶行业发展趋势及发展前景研究报告
- 古诗词诵读 《李凭箜篌引》教案统编版 高中语文选择性必修中册
- 苏科版七年级生物上册全册教案
评论
0/150
提交评论