数学必修4平面向量综合练习题_第1页
数学必修4平面向量综合练习题_第2页
数学必修4平面向量综合练习题_第3页
数学必修4平面向量综合练习题_第4页
数学必修4平面向量综合练习题_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

数学必修4平面向量综合练习题数学必修4平面向量综合练习题数学必修4平面向量综合练习题资料仅供参考文件编号:2022年4月数学必修4平面向量综合练习题版本号:A修改号:1页次:1.0审核:批准:发布日期:一、选择题【共12道小题】1、下列说法中正确的是(

)A.两个单位向量的数量积为1

B.若a·b=a·c且a≠0,则b=cC.

D.若b⊥c,则(a+c)·b=a·b参考答案与解析:解析:A中两向量的夹角不确定;B中若a⊥b,a⊥c,b与c反方向则不成立;C中应为;D中b⊥cb·c=0,所以(a+c)·b=a·b+c·b=a·b.答案:D主要考察知识点:向量、向量的运算2、设e是单位向量,=2e,=-2e,||=2,则四边形ABCD是(

)A.梯形

B.菱形

C.矩形

D.正方形参考答案与解析:解析:,所以||=||,且AB∥CD,所以四边形ABCD是平行四边形.又因为||=||=2,所以四边形ABCD是菱形.答案:B主要考察知识点:向量、向量的运算3、已知|a|=|b|=1,a与b的夹角为90°,且c=2a+3b,d=ka-4b,若c⊥d,则实数k的值为(

)

参考答案与解析:解析:∵c⊥d,∴c·d=(2a+3b)·(ka-4b)=0,即2k-12=0,∴k=6.答案:A主要考察知识点:向量、向量的运算4、设0≤θ<2π,已知两个向量=(cosθ,sinθ),=(2+sinθ,2-cosθ),则向量长度的最大值是(

)A.

B.

C.

D.参考答案与解析:解析:=(2+sinθ-cosθ,2-cosθ-sinθ),所以||=≤=.答案:C主要考察知识点:向量与向量运算的坐标表示5、设向量a=(1,-3),b=(-2,4),c=(-1,-2),若表示向量4a、4b-2c、2(a-c)、d的有向线段首尾相接能构成四边形,则向量d为(

)A.(2,6)

B.(-2,6)

C.(2,-6)

D.(-2,-6)参考答案与解析:解析:依题意,4a+4b-2c+2(a-c)+d=0,所以d=-6a+4b-4c=(-2,-6).答案:D主要考察知识点:向量与向量运算的坐标表示6、已知向量a=(3,4),b=(-3,1),a与b的夹角为θ,则tanθ等于(

)A.

参考答案与解析:解析:由已知得a·b=3×(-3)+4×1=-5,|a|=5,|b|=,所以cosθ=.由于θ∈[0,π],所以sinθ=.所以tanθ==-3.答案:D主要考察知识点:向量与向量运算的坐标表示7、向量a与b不共线,=a+kb,=la+b(k、l∈R),且与共线,则k、l应满足(

)+l=0

=0

+1=0

=0参考答案与解析:解析:因为与共线,所以设=λ(λ∈R),即la+b=λ(a+kb)=λa+λkb,所以(l-λ)a+(1-λk)b=0.因为a与b不共线,所以l-λ=0且1-λk=0,消去λ得1-lk=0,即kl-1=0.答案:D主要考察知识点:向量、向量的运算8、已知平面内三点A(-1,0),B(5,6),P(3,4),且AP=λPB,则λ的值为(

)

C.

D.参考答案与解析:解析:因为=λ,所以(4,4)=λ(2,2).所以λ=.答案:C主要考察知识点:向量与向量运算的坐标表示9、设平面向量a1,a2,a3的和a1+a2+a3=0,如果平面向量b1,b2,b3满足|bi|=2|ai|,且ai顺时针旋转30°后与bi同向,其中i=1,2,3,则(

)+b2+b3=0

+b3=0+b2-b3=0

+b2+b3=0参考答案与解析:解析:根据题意,由向量的物理意义,共点的向量模伸长为原来的2倍,三个向量都顺时针旋转30°后合力为原来的2倍,原来的合力为零,所以由a1+a2+a3=0,可得b1+b2+b3=0.答案:D主要考察知识点:向量、向量的运算10、设过点P(x,y)的直线分别与x轴的正半轴和y轴的正半轴交于A、B两点,点Q与点P关于y轴对称,O为坐标原点,若,且·=1,则P点的轨迹方程是(

)+y2=1(x>0,y>0)

=1(x>0,y>0)=1(x>0,y>0)

+3y2=1(x>0,y>0)参考答案与解析:解析:设P(x,y),则Q(-x,y).设A(xA),xA,B(0,yByB0,=(x,y-yB)=(xAx,-y).∵=2PA,∴x=2(xA,x),y-yB=2y,xA=x,yB=3y(x>0,y>0).又∵·=1,(-x,y)·(-xA,yB)=1,∴(-x,y)·(x,3y)=1,即x2+3y2=1(x>0,y>0).答案:D主要考察知识点:向量、向量的运算11、已知△ABC中,点D在BC边上,且,若,则r+s的值是(

)A.

C.

参考答案与解析:解析:△ABC中,==()=-,故r+s=0.答案:B主要考察知识点:向量、向量的运算12、定义a※b=|a||b|sinθ,θ是向量a和b的夹角,|a|、|b|分别为a、b的模,已知点A(-3,2)、B(2,3),O是坐标原点,则※等于(

)

参考答案与解析:解析:由题意可知=(-3,2),=(2,3),计算得·=-3×2+2×3=0,另一方面·=||||cosθ,∴cosθ=0,又θ∈(0,π),从而sinθ=1,∴※=||||sinθ=13.答案:D主要考察知识点:向量与向量运算的坐标表示二、填空题【共4道小题】1、已知a+b+c=0,且|a|=3,|b|=5,|c|=7,则向量a与b的夹角是____________.参考答案与解析:解析:由已知得a+b=-c,两边平方得a2+2a·b+b2=c2,所以2a·b=72-32-52=15.设a与b的夹角为θ,则cosθ===,所以θ=60°.答案:60°主要考察知识点:向量、向量的运算2、若=2e1+e2,=e1-3e2,=5e1+λe2,且B、C、D三点共线,则实数λ=___________.参考答案与解析:解析:由已知可得=(e1-3e2)-(2e1+e2)=-e1-4e2,=(5e1+λe2)-(e1-3e2)=4e1+(λ+3)e2.由于B、C、D三点共线,所以存在实数m使得,即-e1-4e2=m[4e1+(λ+3)e2].所以-1=4m且-4=m(λ+3),消去m得λ=13.答案:13主要考察知识点:向量、向量的运算3、已知e1、e2是夹角为60°的两个单位向量,则a=2e1+e2和b=2e2-3e1的夹角是__________.参考答案与解析:解析:运用夹角公式cosθ=,代入数据即可得到结果.答案:120°主要考察知识点:向量、向量的运算4、如图2-1所示,两射线OA与OB交于O,则下列选项中向量的终点落在阴影区域内的是_________________.图2-1①

②+

④+

⑤-参考答案与解析:解析:由向量减法法则可知③⑤不符合条件,①②显然满足,④不满足.答案:①②主要考察知识点:向量、向量的运算三、解答题【共6道小题】

1、如图2-2所示,在△ABC中,=c,=a,=b,且a·b=b·c=c·a,试判断△ABC的形状.图2-2参考答案与解析:解:∵a·b=b·c,∴b·(a-c)=0.又b=-(a+c),∴-(a+c)·(a-c)=0,即c2-a2=0.∴|c|=|a|.同理,|b|=|a|,故|a|=|b|=|c|,所以△ABC为等边三角形.主要考察知识点:向量、向量的运算2、如图2-3所示,已知||=||=1,、的夹角为120°,与的夹角为45°,||=5,用,表示.(注:cos75°=)图2-3参考答案与解析:解:设=λ+μ,则·=(λ+μ)·=λ+μ·=λ+μcos120°=λμ.又·=||||cos45°=5cos45°=,∴λμ=,·=(λ+μ)·=λ·+μ=λcos120°+μ=λ+μ.又·=||·||cos(120°-45°)=5cos75°=,∴λ+μ=.∴λ=,μ=.∴=+.主要考察知识点:向量、向量的运算3、在四边形ABCD中(A、B、C、D顺时针排列),=(6,1),=(-2,-3).若有∥,又有⊥,求的坐标.参考答案与解析:解:设=(x,y),则=(6+x,1+y),=(4+x,y-2),=(-x-4,2-y),=(x-2,y-3).又∥及⊥,所以x(2-y)-(-x-4)y=0,

①(6+x)(x-2)+(1+y)(y-3)=0.

②解得或∴=(-6,3)或(2,-1).主要考察知识点:向量与向量运算的坐标表示4、已知平面向量a=(,-1),b=(,).(1)证明a⊥b;(2)若存在不同时为零的实数k、t,使得x=a+(t2-3)b,y=-ka+tb,且x⊥y,求函数关系式k=f(t).参考答案与解析:(1)证明:因为a·b=(,-1)·(,)=+(-1)×=0,所以a⊥b.(2)解:由已知得|a|==2,|b|==1,由于x⊥y,所以x·y=0,即[a+(t2-3)b]·(-ka+tb)=0.所以-ka2+ta·b-k(t2-3)b·a+t(t2-3)b2=0.由于a·b=0,所以-4k+t(t2-3)=0.所以k=t(t2-3).由已知k,t不同时为零得k=t(t2-3)(t≠0).主要考察知识点:向量与向量运算的坐标表示5、已知a、b、c是同一平面内的三个向量,其中a=(1,2).(1)若|c|=,且c∥a,求c的坐标;(2)若|b|=,且a+2b与2a-b垂直,求a与b的夹角θ.参考答案与解析:解:(1)设c=(x,y),∵|c|=,∴,即x2+y2=20,

①∵c∥a,a=(1,2),∴2x-y=0,即y=2x.

②联立①②得或∴c=(2,4)或(-2,-4).(2)∵(a+2b)⊥(2a-b),∴(a+2b)·(2a-b)=0,即2a2+3a·b-2b2=0.∴2|a|2+3a·b-2|b|2=0.

①∵|a|2=5,|b|2=,代入①式得a·b=.∴cosθ==-1.又∵θ∈[0,π],∴θ=π.主要考察知识点:向量与向量运算的坐标表示6、如图2-4所示

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论