版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共12小题,共60分)1.已知向量,,则向量与的夹角为()A. B.C. D.2.下列各组函数是同一函数的是()①与②与③与④与A.②④ B.③④C.②③ D.①④3.已知,且α是第四象限角,那么的值是()A. B.-C.± D.4.下列函数中,与函数是同一函数的是()A. B.C. D.5.若,,,则大小关系为A. B.C. D.6.下列各题中,p是q的充要条件的是()A.p:,q:B.p:,q:C.p:四边形是正方形,q:四边形的对角线互相垂直且平分D.p:两个三角形相似,q:两个三角形三边成比例7.已知两个正实数,满足,则的最小值是()A. B.C.8 D.38.已知定义域为的函数满足:,且,当时,,则等于A. B.C.2 D.49.已知向量,满足,,且与夹角为,则()A. B.C. D.10.已知函数,且在内有且仅有两个不同的零点,则实数的取值范围是A. B.C. D.11.如图,四边形ABCD是平行四边形,则12A.AB B.CDC.CB D.AD12.已知函数对于任意两个不相等实数,都有成立,则实数的取值范围是()A. B.C. D.二、填空题(本大题共4小题,共20分)13.函数的最小值为______.14.已知圆及直线,当直线被圆截得的弦长为时,的值等于________.15.已知,,与的夹角为60°,则________.16.已知幂函数图像过点,则该幂函数的解析式是______________三、解答题(本大题共6小题,共70分)17.已知不等式的解集为(1)求的值;(2)求的值18.如图,射线、分别与轴正半轴成和角,过点作直线分别交、于、两点,当的中点恰好落在直线上时,求直线的方程19.如图,三棱柱ABC﹣A1B1C1中,AA1⊥底面ABC,且△ABC为正三角形,D为AC中点(1)求证:直线AB1∥平面BC1D;(2)求证:平面BC1D⊥平面ACC1A120.已知且满足不等式.(1)求不等式;(2)若函数在区间有最小值为,求实数值21.为落实国家“精准扶贫”政策,某企业于年在其扶贫基地投入万元研发资金,用于养殖业发展,并计划今后年内在此基础上,每年投入的资金比上一年增长(1)写出第年(年为第一年)该企业投入的资金数(万元)与的函数关系式,并指出函数的定义域;(2)该企业从第几年开始(年为第一年),每年投入的资金数将超过万元?(参考数据:,,,,)22.已知函数,.(1)若在上单调递增,求实数a的取值范围;(2)求关于的不等式的解集.
参考答案一、选择题(本大题共12小题,共60分)1、C【解析】结合平面向量线性运算的坐标表示求出,然后代入模长公式分别求出和,进而根据平面向量的夹角公式即可求出夹角的余弦值,进而求出结果.【详解】,,,,从而,且,记与的夹角为,则又,,故选:2、B【解析】利用函数的三要素:定义域、值域、对应关系相同即可求解.【详解】对于①,与,定义域均为,但对应,两函数的对应关系不同,故①不是同一函数;对于②,的定义域为,的定义域为,故②不是同一函数;对于③,与定义域均为,函数表达式可化简为,故③两函数为同一函数;对于④,根据函数的概念,与,定义域、对应关系、值域均相同,故④为同一函数,故选:B【点睛】本题考查了函数的三要素,函数相同只需函数的三要素:定义域、值域、对应关系相同,属于基础题.3、B【解析】由诱导公式对已知式子和所求式子进行化简即可求解.【详解】根据诱导公式:,所以,,故.故选:B【点睛】诱导公式的记忆方法:奇变偶不变,符号看象限.4、C【解析】确定定义域相同,对应法则相同即可判断【详解】解:定义域为,A中定义域为,定义域不同,错误;B中化简为,对应关系不同,错误;C中定义域为,化简为,正确;D中定义域为,定义域不同,错误;故选:C5、D【解析】取中间值0和1分别与这三个数比较大小,进而得出结论【详解】解:,,,,故选:D.【点睛】本题主要考查取中间值法比较数的大小,属于基础题6、D【解析】根据充分条件、必要条件的判定方法,逐项判定,即可求解.【详解】对于A中,当时,满足,所以充分性不成立,反之:当时,可得,所以必要性成立,所以是的必要不充分条件,不符合题意;对于B中,当时,可得,即充分性成立;反之:当时,可得,即必要性不成立,所以是的充分不必要条件,不符合题意;对于C中,若四边形是正方形,可得四边形的对角线互相垂直且平分,即充分性成立;反之:若四边形的对角线互相垂直且平分,但四边形不一定是正方形,即必要性不成立,所以是充分不必要条件,不符合题意;对于D中,若两个三角形相似,可得两个三角形三边成比例,即充分性成立;反之:若两个三角形三边成比例,可得两个三角形相似,即必要性成立,所以是的充分必要条件,符合题意.故选:D.7、A【解析】根据题中条件,得到,展开后根据基本不等式,即可得出结果.【详解】因为正实数满足,则,当且仅当,即时,等号成立.故选:【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.8、D【解析】由得,又由得函数为偶函数,所以选D9、D【解析】根据向量的运算性质展开可得,再代入向量的数量积公式即可得解.【详解】根据向量运算性质,,故选:D10、C【解析】由,即,分别作出函数和的图象如图,由图象可知表示过定点的直线,当过时,此时两个函数有两个交点,当过时,此时两个函数有一个交点,所以当时,两个函数有两个交点,所以在内有且仅有两个不同的零点,实数的取值范围是,故选C.11、D【解析】由线性运算的加法法则即可求解.【详解】如图,设AC,BD交于点O,则12故选:D12、B【解析】由题可得函数为减函数,根据单调性可求解参数的范围.【详解】由题可得,函数为单调递减函数,当时,若单减,则对称轴,得:,当时,若单减,则,在分界点处,应满足,即,综上:故选:B二、填空题(本大题共4小题,共20分)13、【解析】先根据二倍角余弦公式将函数转化为二次函数,再根据二次函数性质求最值.【详解】所以令,则因此当时,取最小值,故答案为:【点睛】本题考查二倍角余弦公式以及二次函数最值,考查基本分析求解能力,属基础题.14、【解析】结合题意,得到圆心到直线的距离,结合点到直线距离公式,计算a,即可【详解】结合题意可知圆心到直线的距离,所以结合点到直线距离公式可得,结合,所以【点睛】考查了直线与圆的位置关系,考查了点到直线距离公式,难度中等15、10【解析】由数量积的定义直接计算.【详解】.故答案为:10.16、【解析】设出幂函数的函数表达,然后代点计算即可.【详解】设,因为,所以,所以函数的解析式是故答案为:.三、解答题(本大题共6小题,共70分)17、(1)(2)【解析】(1)根据根与系数的关系以及化弦为切求解即可;(2)由商数关系化弦为切求解即可.【小问1详解】依题意可知,是方程的两个实数根,所以故【小问2详解】18、【解析】先求出、所在的直线方程,根据直线方程分别设A、B点坐标,进而求出的中点C的坐标,利用点C在直线上以及A、B、P三点共线列关系式解出B点坐标,从而求出直线AB的斜率,然后代入点斜式方程化简即可.【详解】解:由题意可得,,所以直线,设,,所以的中点由点在上,且、、三点共线得解得,所以又,所以所以,即直线的方程为【点睛】知识点点睛:(1)中点坐标公式:,则AB的中点为;(2)直线的点斜式方程:.19、(1)见解析;(2)见解析.【解析】(1)连接交于点,连接,可得为中位线,,结合线面平行的判定定理,得平面;(2)由底面,得,正三角形中,中线,结合线面垂直的判定定理,得平面,最后由面面垂直的判定定理,证出平面平面.【详解】(1)连接交于点,连接,则点为的中点为中点,得为中位线,,平面平面,∴直线平面;(2)证明:底面,,∵底面正三角形,是中点,平面,平面,∴平面平面【点睛】本题考查了直三棱柱的性质,线面平行的判定定理、面面垂直的判定定理,,属于中档题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面.20、(1);(2).【解析】(1)运用指数不等式的解法,可得的范围,再由对数不等式的解法,可得解集;(2)由题意可得函数在递减,可得最小值,解方程可得的值试题解析:(1)∵22a+1>25a-2.∴2a+1>5a-2,即3a<3∴a<1,∵a>0,a<1∴0<a<1.∵loga(3x+1)<loga(7-5x).∴等价为,即,∴,即不等式的解集为(,).(2)∵0<a<1∴函数y=loga(2x-1)在区间[3,6]上为减函数,∴当x=6时,y有最小值为-2,即loga11=-2,∴a-2==11,解得a=.21、(1),其定义域为(2)第年【解析】(1)由题设,应用指数函数模型,写出前2年的研发资金,然后进一部确定函数解析式及定义域;(2)由(1)得,然后利用对数运算求解集.【小问1详解】第一年投入的资金数为万元,第二年投入的资金数为万元,第x年(年为第一年)该企业投入的资金数(万元)与的函数关系式为,其定义域为【小问2详解】由(1)得,,即,因为,所以即该企业从第年,就是从年开始,每年投入的资金数将超过万元22、(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 劳动仲裁调解协议书7篇
- 商业合伙人的协议书
- 传统民间工艺品-捏面人简介
- (参考模板)三通项目立项报告
- 第三次月考试卷-A4
- 重庆2020-2024年中考英语5年真题回-教师版-专题08 阅读理解之记叙文
- 电能表安06课件讲解
- 2023年抗甲状腺药项目融资计划书
- 国华电力危险化学品安全管理培训课件
- PLC控制技术试题库(附参考答案)
- 早期复极综合征的再认识课件
- 李商隐诗歌《锦瑟》课件
- 世界文化遗产-乐山大佛课件
- 2022小学一年级数学活用从不同角度解决问题测试卷(一)含答案
- 博尔赫斯简介课件
- 2021年山东交投矿业有限公司招聘笔试试题及答案解析
- 施工单位资料检查内容
- 大气课设-酸洗废气净化系统
- 学校校庆等大型活动安全应急预案
- 检测公司检验检测工作控制程序
- 高血压病例优秀PPT课件
评论
0/150
提交评论