版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年九上数学期末模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每题4分,共48分)1方程化为一元二次方程一般形式后,二次项系数、一次项系数、常数项分别是( )A5,6,-8B5,-6,-8C5,-6,8D6,5,-82下列语句中,正确的是()相等的圆周角所对的弧相等;同弧或等弧所对的圆周角相等;平分弦的直径垂直于弦,并且平分弦所对的弧;圆内接平行四边形一定是矩形ABCD3如图,在矩形中,对角线与
2、相交于点,垂足为点,且,则的长为( )ABCD4如图,电路图上有四个开关A、B、C、D和一个小灯泡,则任意闭合其中两个开关,小灯泡发光的概率是()ABCD5如图,中,则( )ABCD6已知O的半径为5cm,圆心O到直线l的距离为5cm,则直线l与O的位置关系为()A相交B相切C相离D无法确定7如图,已知在中,于,则下列结论错误的是( )ABCD8当温度不变时,气球内气体的气压P(单位:kPa)是气体体积V(单位:m3)的函数,下表记录了一组实验数据:P与V的函数关系式可能是() V(单位:m3)11.522.53P(单位:kPa)96644838.432AP96VBP16V+112CP16V2
3、96V+176DP9如图,矩形的对角线交于点O,已知则下列结论错误的是( )ABCD10已知二次函数的图象如图所示,对于下列结论:;方程的根是,其中正确结论的个数是( )A5B4C3D211如图,AD是ABC的中线,点E在AD上,AD4DE,连接BE并延长交AC于点F,则AF:FC的值是()A3:2B4:3C2:1D2:312已知y=(m+2)x|m|+2是关于x的二次函数,那么m的值为()A2B2C2D0二、填空题(每题4分,共24分)13如下图,圆柱形排水管水平放置,已知截面中有水部分最深为,排水管的截面半径为,则水面宽是_14已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x
4、1=2,x2=4,则m+n=_15西周时期,丞相周公旦设置过一种通过测定日影长度来确定时间的仪器,称为圭表.如图是一个根据北京的地理位置设计的圭表,其中,立柱高为.已知,冬至时北京的正午日光入射角约为,则立柱根部与圭表的冬至线的距离(即的长)为_.16某同学想要计算一组数据105,103,94,92,109,85的方差,在计算平均数的过程中,将这组数据中的每一个数都减去100,得到一组新数据5,3,6,8,9,15,记这组新数据的方差为,则_(填“”、“=”或“”).17二次函数y2x25kx3的图象经过点M(2,10),则k_18如图,二次函数的图象记为,它与轴交于点,;将绕点旋转180得,
5、交轴于点;将绕点旋转180得,交轴于点;如此进行下去,得到一条“波浪线”.若在这条“波浪线”上,则_.三、解答题(共78分)19(8分)某商店准备进一批季节性小家电,单价40元经市场预测,销售定价为52元时,可售出180个,定价每增加1元,销售量净减少10个,因受库存的影响,每批次进货个数不得超过180个,商店若将准备获利2000元,定价为多少元?20(8分)已知:如图,四边形的对角线、相交于点,.(1)求证:;(2)设的面积为,求证:S四边形ABCD.21(8分)如图,在ABC中,AB=AC,D为BC边的中点,过点D作DEAB,DFAC,垂足分别为E,F(1)求证:BEDCFD;(2)若A=
6、60,BE=2,求ABC的周长22(10分)如图,已知抛物线与y轴相交于点A(0,3),与x正半轴相交于点B,对称轴是直线x=1(1)求此抛物线的解析式以及点B的坐标(2)动点M从点O出发,以每秒2个单位长度的速度沿x轴正方向运动,同时动点N从点O出发,以每秒3个单位长度的速度沿y轴正方向运动,当N点到达A点时,M、N同时停止运动过动点M作x轴的垂线交线段AB于点Q,交抛物线于点P,设运动的时间为t秒当t为何值时,四边形OMPN为矩形当t0时,BOQ能否为等腰三角形?若能,求出t的值;若不能,请说明理由23(10分)甲乙两名同学做摸球游戏,他们把三个分别标有1,2,3的大小和形状完全相同的小球
7、放在一个不透明的口袋中(1)求从袋中随机摸出一球,标号是1的概率;(2)从袋中随机摸出一球后放回,摇匀后再随机摸出一球,若两次摸出的球的标号之和为偶数时,则甲胜;若两次摸出的球的标号之和为奇数时,则乙胜;试分析这个游戏是否公平?请说明理由24(10分)如图,是的直径,弦于点,点在上,恰好经过圆心,连接.(1)若,求的直径;(2)若,求的度数.25(12分)解不等式组,将解集在数轴上表示出来,并求出此不等式组的所有整数解.26已知:如图,四边形ABCD的对角线AC和BD相交于点E,AD=DC,DC2=DEDB,求证:(1)BCEADE;(2)ABBC=BDBE参考答案一、选择题(每题4分,共48
8、分)1、C【分析】先将该方程化为一般形式,即可得出结论【详解】解:先将该方程化为一般形式:从而确定二次项系数为5,一次项系数为-6,常数项为8 故选C【考点】此题考查的是一元二次方程的项和系数,掌握一元二次方程的一般形式是解决此题的关键2、C【分析】根据圆周角定理、垂径定理、圆内接四边形的性质定理判断【详解】在同圆或等圆中,相等的圆周角所对的弧相等,本说法错误;同弧或等弧所对的圆周角相等,本说法正确;平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧,本说法错误;圆内接平行四边形一定是矩形,本说法正确;故选:C【点睛】本题考查的是命题的真假判断,掌握圆周角定理、垂径定理、圆内接四边形的性质定
9、理是解题的关键3、C【分析】由矩形的性质得到:设 利用勾股定理建立方程求解即可得到答案【详解】解: 矩形, 设 则 , (舍去) 故选C【点睛】本题考查的是矩形的性质,勾股定理,掌握以上知识点是解题的关键4、A【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小灯泡发光的情况,再利用概率公式即可求得答案【详解】解:画树状图得:共有12种等可能的结果,现任意闭合其中两个开关,则小灯泡发光的有6种情况,小灯泡发光的概率为故选:A【点睛】此题考查了列表法或树状图法求概率用到的知识点为:概率所求情况数与总情况数之比5、B【分析】由题意根据勾股定理求出BC,进而利用三角函数进行分析即可求
10、值.【详解】解:中,.故选:B.【点睛】本题主要考查勾股定理和锐角三角函数的定义及运用,注意掌握在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边6、B【分析】根据圆心到直线的距离5等于圆的半径5,即可判断直线和圆相切【详解】圆心到直线的距离5cm=5cm,直线和圆相切,故选B【点睛】本题考查了直线与圆的关系,解题的关键是能熟练根据数量之间的关系判断直线和圆的位置关系若dr,则直线与圆相交;若d=r,则直线于圆相切;若dr,则直线与圆相离7、A【分析】根据三角形的面积公式判断A、D,根据射影定理判断B、C【详解】由三角形的面积公式可知,CDAB=ACBC,A错误,符合题
11、意,D正确,不符合题意;RtABC中,ACB=90,CDAB,AC2=ADAB,BC2=BDAB,B、C正确,不符合题意;故选:A【点睛】本题考查的是射影定理、三角形的面积计算,掌握射影定理、三角形的面积公式是解题的关键8、D【解析】试题解析:观察发现: 故P与V的函数关系式为 故选D.点睛:观察表格发现 从而确定两个变量之间的关系即可9、C【分析】根据矩形的性质得出ABCDCB90,ACBD,AOCO,BODO,ABDC,再解直角三角形判定各项即可【详解】选项A,四边形ABCD是矩形,ABCDCB90,ACBD,AOCO,BODO,AOOBCODO,DBCACB,由三角形内角和定理得:BAC
12、BDC,选项A正确; 选项B,在RtABC中,tan,即BCmtan,选项B正确;选项C,在RtABC中,AC,即AO,选项C错误;选项D,四边形ABCD是矩形,DCABm,BACBDC,在RtDCB中,BD,选项D正确.故选C【点睛】本题考查了矩形的性质和解直角三角形,能熟记矩形的性质是解此题的关键10、B【分析】根据抛物线与轴的交点个数可对进行判断;利用时函数值为负数可对进行判断;由抛物线开口方向得,由抛物线的对称轴方程得到,由抛物线与轴交点位置得,于是可对进行判断;由于时,得到,然后把代入计算,则可对进行判断;根据抛物线与轴的交点问题可对进行判断【详解】解:抛物线与轴有两个不同的交点,即
13、正确;时,即正确;抛物线开口向上,抛物线的对称轴为直线,抛物线与轴交点位于轴负半轴,所以错误;,而,所以正确;抛物线与轴的交点坐标为、,即或3时,方程的根是,所以正确综上所述:正确结论有,正确结论有4个.故选:【点睛】本题考查了二次函数与系数的关系:对于二次函数,二次项系数决定抛物线的开口方向和大小;一次项系数和二次项系数共同决定对称轴的位置;常数项决定抛物线与轴交点;抛物线与轴交点个数由决定11、A【分析】过点D作DGAC, 根据平行线分线段成比例定理,得FC=1DG,AF=3DG,因此得到AF:FC的值【详解】解:过点D作DGAC,与BF交于点GAD=4DE,AE=3DE,AD是ABC的中
14、线,DGAC,即AF=3DG,即FC=1DG,AF:FC=3DG:1DG=3:1故选:A【点睛】本题考查了平行线分线段成比例定理,正确作出辅助线充分利用对应线段成比例的性质是解题的关键12、B【解析】试题解析:是关于的二次函数,解得:故选B.二、填空题(每题4分,共24分)13、【分析】利用垂径定理构建直角三角形,然后利用勾股定理即可得解.【详解】设排水管最低点为C,连接OC交AB于D,连接OB,如图所示:OC=OB=10,CD=5OD=5OCAB故答案为:.【点睛】此题主要考查垂径定理的实际应用,熟练掌握,即可解题.14、-1【分析】根据根与系数的关系得出-2+4=-m,-24=n,再求出m
15、+n的值即可【详解】解:关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=-2,x2=4,-2+4=-m,-24=n,解得:m=-2,n=-8,m+n=-1,故答案为:-1【点睛】本题考查了根与系数的关系的应用,能根据根与系数的关系得出-2+4=-m,-24=n是解此题的关键15、【分析】直接根据正切的定义求解即可.【详解】在RtABC中,约为,高为,tanABC=,BC=m.故答案为:.【点睛】本题考查了解直角三角形的应用,解决此问题的关键在于正确理解题意得基础上建立数学模型,把实际问题转化为数学问题.16、=【分析】根据一组数据中的每一个数据都加上或减去同一个非零常数,那么这组
16、数据的波动情况不变,即方差不变,即可得出答案.【详解】解:一组数据中的每一个数据都加上或减去同一个非零常数,它的平均数都加上或减去这一个常数,两数进行相减,方差不变,故答案为:=.【点睛】本题考查的知识点是数据的平均数与方差,需要记忆的是如果将一组数据中的每一个数据都加上同一个非零常数,那么这组数据的方差不变,但平均数要变,且平均数增加这个常数17、【分析】点M(2,10),代入二次函数y2x25kx3即可求出k的值【详解】把点M(2,10),代入二次函数y2x25kx3得,8+10k310,解得,k,故答案为:【点睛】本题考查求二次函数解析式的系数,解题的关键是将图象上的点坐标代入函数解析式
17、18、1【分析】根据抛物线与x轴的交点问题,得到图象C1与x轴交点坐标为:(1,1),(2,1),再利用旋转的性质得到图象C2与x轴交点坐标为:(2,1),(4,1),则抛物线C2:y=(x-2)(x-4)(2x4),于是可推出横坐标x为偶数时,纵坐标为1,横坐标是奇数时,纵坐标为1或-1,由此即可解决问题【详解】解:一段抛物线C1:y=-x(x-2)(1x2),图象C1与x轴交点坐标为:(1,1),(2,1),将C1绕点A1旋转181得C2,交x轴于点A2;,抛物线C2:y=(x-2)(x-4)(2x4),将C2绕点A2旋转181得C3,交x轴于点A3;P(2121,m)在抛物线C1111上
18、,2121是偶数,m=1,故答案为1【点睛】本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式三、解答题(共78分)19、该商品定价60元【分析】设每个商品定价x元,然后根据题意列出方程求解即可【详解】解:设每个商品定价x元,由题意得:解得, 当x=50时,进货180-10(50-52)=200,不符题意,舍去当x=60时,进货180-10(60-52)=100,符合题意答:当该商品定价60元,进货100个【点睛】本题主要考
19、查一元一次方程的应用,关键是设出未知数然后列方程求解即可20、(1)证明见解析;(2)证明见解析【分析】(1)由SAOD=SBOC易得SADB=SACB,根据三角形面积公式得到点D和点C到AB的距离相等,则CDAB,于是可判断DOCBOA,然后利用相似比即可得到结论;(2)利用相似三角形的性质可得结论【详解】(1)SAOD=SBOC,SAOD+SAOB=SBOC+SAOB,即SADB=SACB,CDAB,DOCBOA, ;(2)DOCBOA k,2=k2,DO=kOB,CO=kAO,SCOD=k2S,SAOD=kSOAB=kS,SCOB=kSOAB=kS,S四边形ABCD=S+kS+kS+k2
20、S=(k+1)2S【点睛】此题考查相似三角形的判定和性质,证明DOCBOA是解题的关键21、(1)证明见解析;(2)1【解析】试题分析:(1)根据DEAB,DFAC,AB=AC,求证B=C再利用D是BC的中点,求证BEDCFD即可得出结论(2)根据AB=AC,A=60,得出ABC为等边三角形然后求出BDE=30,再根据题目中给出的已知条件即可算出ABC的周长试题解析:(1)DEAB,DFAC,BED=CFD=90,AB=AC,B=C(等边对等角)D是BC的中点,BD=CD在BED和CFD中,BEDCFD(AAS)DE=DF(2)AB=AC,A=60,ABC为等边三角形B=60,BED=90,B
21、DE=30,BE=BD,BE=2,BD=4,BC=2BD=8,ABC的周长为1考点:全等三角形的判定与性质22、(1),B点坐标为(3,0);(2);【分析】(1)由对称轴公式可求得b,由A点坐标可求得c,则可求得抛物线解析式;再令y=0可求得B点坐标;(2)用t可表示出ON和OM,则可表示出P点坐标,即可表示出PM的长,由矩形的性质可得ON=PM,可得到关于t的方程,可求得t的值;由题意可知OB=OA,故当BOQ为等腰三角形时,只能有OB=BQ或OQ=BQ,用t可表示出Q点的坐标,则可表示出OQ和BQ的长,分别得到关于t的方程,可求得t的值【详解】(1)抛物线对称轴是直线x=1,=1,解得b
22、=2,抛物线过A(0,3),c=3,抛物线解析式为,令y=0可得,解得x=1或x=3,B点坐标为(3,0);(2)由题意可知ON=3t,OM=2t,P在抛物线上,P(2t,),四边形OMPN为矩形,ON=PM,3t=,解得t=1或t=(舍去),当t的值为1时,四边形OMPN为矩形;A(0,3),B(3,0),OA=OB=3,且可求得直线AB解析式为y=x+3,当t0时,OQOB,当BOQ为等腰三角形时,有OB=QB或OQ=BQ两种情况,由题意可知OM=2t,Q(2t,2t+3),OQ=,BQ=|2t3|,又由题意可知0t1,当OB=QB时,则有|2t3|=3,解得t=(舍去)或t=;当OQ=B
23、Q时,则有=|2t3|,解得t=;综上可知当t的值为或时,BOQ为等腰三角形23、(1);(2)这个游戏不公平,理由见解析.【分析】(1)由把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲胜,乙胜的情况,即可求得求概率,比较大小,即可知这个游戏是否公平【详解】解:(1)由于三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中,故从袋中随机摸出一球,标号是1的概率为:;(2)这个游戏不公平画树状图得:共有9种等可能的结果,两次摸出的球的标号之和为偶数的有5种情况,两次摸出的球的标号之和为奇数的有4种情况,P(甲胜)=,P(乙胜)=P(甲胜)P(乙胜),故这个游戏不公平【点睛】本题考查的是游戏公平性的判断判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平24、(1)1;(2)【分析】(1)由CD16,BE4,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《做功了吗》课件
- 手术总结 课件
- 西京学院《英美文学导读》2022-2023学年第一学期期末试卷
- 西京学院《书法》2021-2022学年第一学期期末试卷
- 西京学院《机器学习》2021-2022学年期末试卷
- 西京学院《工程造价软件应用》2022-2023学年第一学期期末试卷
- 2024-2025学年高考语文试题及参考答案
- 西华师范大学《智能计算》2022-2023学年期末试卷
- 西华师范大学《写实油画》2023-2024学年第一学期期末试卷
- 西华师范大学《审计学》2021-2022学年第一学期期末试卷
- Q/GDW-1738-2012配电网规划设计技术导则
- 包装盒结构的认识
- 龙口粉丝行业分析
- 《跨境电商应用英语1》课程标准
- 医保集采工作总结
- 匾额制作工艺
- 维护社会稳定规定
- 急性心力衰竭通用课件
- 医疗废物的减量化处理方法与技术
- 中国心血管病风险评估和指南
- 建筑结构抗震能力评估技术
评论
0/150
提交评论