2023学年辽宁省沈阳市第三十八中学数学九年级第一学期期末综合测试试题含解析_第1页
2023学年辽宁省沈阳市第三十八中学数学九年级第一学期期末综合测试试题含解析_第2页
2023学年辽宁省沈阳市第三十八中学数学九年级第一学期期末综合测试试题含解析_第3页
2023学年辽宁省沈阳市第三十八中学数学九年级第一学期期末综合测试试题含解析_第4页
2023学年辽宁省沈阳市第三十八中学数学九年级第一学期期末综合测试试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年九上数学期末模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1两个相似多边形的面积比是916,其中小多边形的周长为36 cm,则较大多边形的周长为)A48 cmB54 cmC56 cmD64 cm2小明在太阳光下观察矩形木板的影子,不可能是( )A平行四边形B矩形C线段D梯形3计算 的结果是( )ABCD94如图,

2、在中,D、E分别在AB边和AC边上,M为BC边上一点(不与B、C重合),连结AM交DE于点N,则( )ABCD5点关于原点的对称点是ABCD6已知抛物线yx2+bx+c的部分图象如图所示,若y0,则x的取值范围是()A1x4B1x3Cx1或x4Dx1或x37在二次函数的图像中,若随的增大而增大,则的取值范围是ABCD8关于x的一元二次方程有实数根,则整数a的最大值是( )A2B1C0D19 抛物线的顶点坐标( )A(-3,4)B(-3,-4)C(3,-4)D(3,4)10如图,将RtABC(其中B=35,C=90)绕点A按顺时针方向旋转到AB1C1的位置,使得点C、A、B1在同一条直线上,那么

3、旋转角等于( )A55B70C125D145二、填空题(每小题3分,共24分)11一个扇形的圆心角是120它的半径是3cm则扇形的弧长为_cm12如图,在ABC中,中线BF、CE交于点G,且CEBF,如果,那么线段CE的长是_13在平面直角坐标系中,点P(4,1)关于点(2,0)中心对称的点的坐标是_.14如图,在ABC中,点D、E分别在ABC的两边AB、AC上,且DEBC,如果,那么线段BC的长是_ 15如图所示,矩形纸片中,把它分割成正方形纸片和矩形纸片后,分别裁出扇形和半径最大的圆,恰好能作一个圆锥的侧面和底面,则的长为_16如图,点A,B的坐标分别为(1,4)和(4,4),抛物线y=a

4、(xm)2+n的顶点在线段AB上运动,与x轴交于C、D两点(C在D的左侧),点C的横坐标最小值为3,则点D的横坐标最大值为_17古希腊时期,人们认为最美人体的肚脐至脚底的长度与身高长度之比是(0.618,称之为黄金分割比例),著名的“断臂维纳斯”便是如此,若某位女性身高为165cm,肚脐到头顶高度为65cm,则其应穿鞋跟为_cm的高跟鞋才能使人体近似满足黄金分割比例(精确到1cm)18小刚要测量一旗杆的高度,他发现旗杆的影子恰好落在一栋楼上,如图,此时测得地面上的影长为8米,楼面上的影长为2米同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,则旗杆的高度为_米三、解答题(共66

5、分)19(10分)为早日实现脱贫奔小康的宏伟目标,我市结合本地丰富的山水资源,大力发展旅游业,王家庄在当地政府的支持下,办起了民宿合作社,专门接待游客,合作社共有80间客房根据合作社提供的房间单价x(元)和游客居住房间数y(间)的信息,乐乐绘制出y与x的函数图象如图所示:(1)求y与x之间的函数关系式;(2)合作社规定每个房间价格不低于60元且不超过150元,对于游客所居住的每个房间,合作社每天需支出20元的各种费用,房价定为多少时,合作社每天获利最大?最大利润是多少?20(6分)如图,在等腰ABC和ADE中,AB=AC,AD=AE,且BAC=DAE=120(1)求证:ABDACE;(2)把A

6、DE绕点A逆时针方向旋转到图的位置,连接CD,点M、P、N分别为DE、DC、BC的中点,连接MN、PN、PM,判断PMN的形状,并说明理由;(3)在(2)中,把ADE绕点A在平面内自由旋转,若AD=4,AB=6,请分别求出PMN周长的最小值与最大值21(6分)如图所示,一辆单车放在水平的地面上,车把头下方处与坐垫下方处在平行于地面的同一水平线上,之间的距离约为,现测得,与的夹角分别为与,若点到地面的距离为,坐垫中轴处与点的距离为,求点到地面的距离(结果保留一位小数).(参考数据:,)22(8分)抛物线与轴交于两点(点在点的左侧),与轴交于点.已知,抛物线的对称轴交轴于点.(1)求出的值;(2)

7、如图1,连接,点是线段下方抛物线上的动点,连接.点分别在轴,对称轴上,且轴.连接.当的面积最大时,请求出点的坐标及此时的最小值;(3)如图2,连接,把按照直线对折,对折后的三角形记为,把沿着直线的方向平行移动,移动后三角形的记为,连接,在移动过程中,是否存在为等腰三角形的情形?若存在,直接写出点的坐标;若不存在,请说明理由.23(8分)已知,二次函数(m,n为常数且m0)(1)若n0,请判断该函数的图像与x轴的交点个数,并说明理由;(2)若点A(n5,n)在该函数图像上,试探索m,n满足的条件;(3)若点(2,p),(3,q),(4,r)均在该函数图像上,且pqr,求m的取值范围.24(8分)

8、如图,二次函数的图象与一次函数的图象交于点及点(1)求二次函数的解析式及的坐标(2)根据图象,直按写出满足的的取值范围25(10分)如图,内接于,且为的直径的平分线交于点,过点作的切线交的延长线于点,过点作于点,过点作于点(1)求证:;(2)试猜想线段,之间有何数量关系,并加以证明;(3)若,求线段的长26(10分)如图,AB为O的直径,CD是O的弦,AB、CD的延长线交于点E,已知AB2DE,E18,求AOC的度数参考答案一、选择题(每小题3分,共30分)1、A【解析】试题分析:根据相似多边形对应边之比、周长之比等于相似比,而面积之比等于相似比的平方计算即可解:两个相似多边形的面积比是9:1

9、6,面积比是周长比的平方,则大多边形与小多边形的相似比是4:1相似多边形周长的比等于相似比,因而设大多边形的周长为x,则有=,解得:x=2大多边形的周长为2cm故选A考点:相似多边形的性质2、D【分析】根据平行投影的特点可确定矩形木板与地面平行且与光线垂直时所成的投影为矩形;当矩形木板与光线方向平行且与地面垂直时所成的投影为一条线段;除以上两种情况矩形在地面上所形成的投影均为平行四边形,据此逐一判断即可得答案.【详解】A.将木框倾斜放置形成的影子为平行四边形,故该选项不符合题意,B.将矩形木框与地面平行放置时,形成的影子为矩形,故该选项不符合题意,C.将矩形木框立起与地面垂直放置时,形成的影子

10、为线段,D.由物体同一时刻物高与影长成比例,且矩形对边相等,梯形两底不相等,得到投影不可能是梯形,故该选项符合题意,故选:D.【点睛】本题考查了平行投影特点:在同一时刻,不同物体的物高和影长成比例,平行物体的影子仍旧平行或重合灵活运用平行投影的性质是解题的关键3、D【分析】根据负整数指数幂的计算方法:,为正整数),求出的结果是多少即可【详解】解:,计算的结果是1故选:D【点睛】此题主要考查了负整数指数幂:,为正整数),要熟练掌握,解答此题的关键是要明确:(1)计算负整数指数幂时,一定要根据负整数指数幂的意义计算;(2)当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数4、C【分析】根据

11、平行线的性质和相似三角形的判定可得ADNABM,ANEAMC,再根据相似三角形的性质即可得到答案.【详解】,ADNABM,ANEAMC,故选C.【点睛】本题考查平行线的性质、相似三角形的判定和性质,解题的关键是熟练掌握平行线的性质、相似三角形的判定和性质.5、C【解析】解:点P(4,3)关于原点的对称点是(4,3)故选C【点睛】本题考查关于原点对称的点的坐标,两个点关于原点对称时,两个点的横、纵坐标符号相反,即P(x,y)关于原点O的对称点是P(x,y)6、B【解析】试题分析:观察图象可知,抛物线y=x2bxc与x轴的交点的横坐标分别为(1,0)、(1,0),所以当y0时,x的取值范围正好在两

12、交点之间,即1x1故选B考点:二次函数的图象1061447、A【解析】二次函数的开口向下,所以在对称轴的左侧y随x的增大而增大二次函数的对称轴是,故选A8、C【分析】根据一元二次方程的根的判别式可得答案.【详解】解:关于x的一元二次方程有实数根,.即a的取值范围是且.整数a的最大值为0.故选C.【点睛】本题考查了一元二次方程,熟练掌握根的判别式与根的关系是解题关键.9、D【解析】根据抛物线顶点式的特点写出顶点坐标即可得.【详解】因为是抛物线的顶点式,根据顶点式的坐标特点,顶点坐标为(3, 4),故选D【点睛】本题考查了抛物线的顶点,熟练掌握抛物线顶点式的特点是解题的关键.10、C【解析】试题分

13、析:B=35,C=90,BAC=90B=9035=55点C、A、B1在同一条直线上,BAB=180BAC=18055=125旋转角等于125故选C二、填空题(每小题3分,共24分)11、2【解析】分析:根据弧长公式可得结论详解:根据题意,扇形的弧长为=2,故答案为:2点睛:本题主要考查弧长的计算,熟练掌握弧长公式是解题的关键12、【分析】根据题意得到点G是ABC的重心,根据重心的性质得到DG=AD,CG=CE,BG=BF,D是BC的中点,由直角三角形斜边中线等于斜边一半可得BC=5,再根据勾股定理求出GC即可解答.【详解】解:延长AG交BC于D点,中线BF、CE交于点G,ABC的两条中线AD、

14、CE交于点G,点G是ABC的重心,D是BC的中点,AG=AD,CG=CE,BG=BF,,.CEBF,即BGC=90,BC=2DG=5,在RtBGC中,CG=,故答案为:.【点睛】本题考查的是三角形的重心的概念和性质,三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍理解三角形重心的性质是解题的关键.13、(0,-1)【分析】在平面直角坐标系中画出图形,根据已知条件列出方程并求解,从而确定点关于点中心对称的点的坐标【详解】解:连接并延长到点,使,设,过作轴于点,如图:在和中,故答案是:【点睛】本题考查了一个点关于某个点对称的点的坐标,关键在于掌握点的坐标的变化规律1

15、4、;【分析】根据DEBC可得,再由相似三角形性质列比例式即可求解【详解】解:,又,解得:故答案为:【点睛】本题主要考查了平行线分线段成比例定理的应用,找准对应线段是解题的关键15、cm.【分析】设AB=xcm,则DE=(6-x)cm,根据扇形的弧长等于圆锥底面圆的周长列出方程,求解即可【详解】解:设AB=xcm,则DE=(6-x)cm,根据题意,得解得x=1故选:1cm【点睛】本题考查了圆锥的计算,矩形的性质,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长16、1【分析】根据题意当点C的横坐标取最小值时,抛物线的顶点

16、与点A重合,进而可得抛物线的对称轴,则可求出此时点D的最小值,然后根据抛物线的平移可求解【详解】解:点A,B的坐标分别为(1,4)和(4,4),AB=3,由抛物线y=a(xm)2+n的顶点在线段AB上运动,与x轴交于C、D两点(C在D的左侧),可得:当点C的横坐标取最小值时,抛物线的顶点与点A重合,抛物线的对称轴为:直线,点,点D的坐标为,顶点在线段AB上移动,点D的横坐标的最大值为:5+3=1;故答案为1【点睛】本题主要考查二次函数的平移及性质,熟练掌握二次函数的性质是解题的关键17、1【分析】根据黄金分割的概念,列出方程直接求解即可【详解】设她应选择高跟鞋的高度是xcm,则 0.618,解

17、得:x1,且符合题意故答案为1【点睛】此题考查黄金分割的应用,解题关键是明确黄金分割所涉及的线段的比18、1【分析】直接利用已知构造三角形,利用同一时刻,实际物体与影长成比例进而得出答案【详解】如图所示:由题意可得,DE2米,BECD8米,同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,解得:AB4,故旗杆的高度AC为1米故答案为:1【点睛】此题主要考查了相似三角形的应用,正确构造三角形是解题关键三、解答题(共66分)19、(1)y=0.5x+110;(2)房价定为120元时,合作社每天获利最大,最大利润是5000元【解析】(1)根据题意和函数图象中的数据可以求得相应的函数解

18、析式;(2)根据题意可以得到利润与x之间的函数解析式,从而可以求得最大利润【详解】(1)设y与x之间的函数关系式为y=kx+b,解得:,即y与x之间的函数关系式是y=0.5x+110;(2)设合作社每天获得的利润为w元,w=x(0.5x+110)20(0.5x+110)=0.5x2+120 x2200=0.5(x120)2+5000,60 x150,当x=120时,w取得最大值,此时w=5000,答:房价定为120元时,合作社每天获利最大,最大利润是5000元【点睛】本题考查了一次函数的应用、二次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用二次函数的性质解答20、(1)证

19、明见解析;(2)PMN是等边三角形理由见解析;(3)PMN周长的最小值为3,最大值为1【解析】分析:(1)由BAC=DAE=120,可得BAD=CAE,再由AB=AC,AD=AE,利用SAS即可判定ABDADE;(2)PMN是等边三角形,利用三角形的中位线定理可得PM=CE,PMCE,PN=BD,PNBD,同(1)的方法可得BD=CE,即可得PM=PN,所以PMN是等腰三角形;再由PMCE,PNBD,根据平行线的性质可得DPM=DCE,PNC=DBC,因为DPN=DCB+PNC=DCB+DBC, 所以MPN=DPM+DPN=DCE+DCB+DBC=BCE+DBC=ACB+ACE+DBC=ACB

20、+ABD+DBC=ACB+ABC,再由BAC=120,可得ACB+ABC=60,即可得MPN=60,所以PMN是等边三角形;(3)由(2)知,PMN是等边三角形,PM=PN=BD,所以当PM最大时,PMN周长最大,当点D在AB上时,BD最小,PM最小,求得此时BD的长,即可得PMN周长的最小值;当点D在BA延长线上时,BD最大,PM的值最大,此时求得PMN周长的最大值即可.详解:(1)因为BAC=DAE=120,所以BAD=CAE,又AB=AC,AD=AE,所以ABDADE;(2)PMN是等边三角形理由:点P,M分别是CD,DE的中点,PM=CE,PMCE,点N,M分别是BC,DE的中点,PN

21、=BD,PNBD,同(1)的方法可得BD=CE,PM=PN,PMN是等腰三角形,PMCE,DPM=DCE,PNBD,PNC=DBC,DPN=DCB+PNC=DCB+DBC, MPN=DPM+DPN=DCE+DCB+DBC=BCE+DBC=ACB+ACE+DBC=ACB+ABD+DBC=ACB+ABC,BAC=120,ACB+ABC=60,MPN=60,PMN是等边三角形(3)由(2)知,PMN是等边三角形,PM=PN=BD,PM最大时,PMN周长最大,点D在AB上时,BD最小,PM最小,BD=AB-AD=2,PMN周长的最小值为3;点D在BA延长线上时,BD最大,PM最大,BD=AB+AD=1

22、0,PMN周长的最大值为1故答案为PMN周长的最小值为3,最大值为1点睛:本题主要考查了全等三角形的判定及性质、三角形的中位线定理、等边三角形的判定,解决第(3)问,要明确点D在AB上时,BD最小,PM最小,PMN周长的最小;点D在BA延长线上时,BD最大,PM最大,PMN周长的最大值为1.21、66.7cm【分析】过点C作CHAB于点H,过点E作EF垂直于AB延长线于点F,设CH=x,则AH=CH=x,BH=CHcot68=0.4x,由AB=49知x+0.4x=49,解之求得CH的长,再由EF=BEsin68=3.72根据点E到地面的距离为CH+CD+EF可得答案【详解】如图,过点C作CHA

23、B于点H,过点E作EF垂直于AB延长线于点F,设CH=x,则AH=CH=x,BH=CHcot68=0.4x,由AB=49得x+0.4x=49,解得:x=35,BE=4,EF=BEsin68=3.72,则点E到地面的距离为CH+CD+EF=35+28+3.7266.7(cm),答:点E到地面的距离约为66.7cm.【点睛】本题考查解直角三角形的实际应用,构造直角三角形,利用已知角度的三角函数值是解题的关键.22、(1);(2),最小值为;(3)或或或或.【分析】(1)由抛物线的对称性可得到,然后将A、B、C坐标代入抛物线解析式,求出a、b、c的值即可得到抛物线解析式;(2)利用待定系数法求出直线

24、BC解析式,作轴交于点,设,则,表示出PQ的长度,然后得到PBC的面积表达式,根据二次函数最值问题求出P点坐标,再把向左移动1个单位得,连接,易得即为最小值;(3)由题意可知在直线上运动,设,则,分别讨论:,建立方程求出m的值,即可得到的坐标.【详解】解:(1)由抛物线的对称性知,把代入解析式,得解得:抛物线的解析式为.(2)设BC直线解析式为为将代入得,解得直线的解析式为.作轴交于点,如图,设,则,.当时,取得最大值,此时,.把向左移动1个单位得,连接,如图.(3)由题意可知在直线上运动,设,则,当时,解得此时或;当时,解得此时或当时,解得,此时,综上所述的坐标为或或或.【点睛】本题考查二次

25、函数的综合问题,涉及待定系数法求函数解析式,面积最值与线段最值问题,等腰三角形存在性问题,是中考常考的压轴题,难度较大,采用数形结合与分类讨论是解题的关键.23、 (1) 函数图像与轴有两个交点; (2) 或; (3) 且m0【分析】(1)先确定=b2-4ac0,可得函数图象与轴有两个交点;(2)将点A代入中即可得m,n应满足的关系;(3)根据二次函数的增减性进行分类讨论.【详解】解: (1)当时,原函数为该函数图像与轴有两个交点(2)将代入原函数得:或(3) 对称轴当2,3,4在对称轴的同一侧时,且m0且m0当2,3,4在对称轴两侧时,综上:且m0【点睛】本题考查二次函数图象的特征,利用图象特征与字母系数的关系,观察图象即数形结合是解答此题的关键.24、(1)或,点B的坐标为(4,3);(2)当时,kx+b(x-2)2+m【分析】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论