版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年九上数学期末模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1如图,正方形中,点、分别在边,上,与交于点.若,则的长为( )ABCD2如图,将边长为6的正六边形铁丝框ABCDEF(面积记为S1)变形为以点D为圆心,CD为半径的
2、扇形(面积记为S2),则S1与S2的关系为( )AS1S2BS1S2CS1S2DS1S23如图,在矩形中,在上,交于,连结,则图中与一定相似的三角形是ABCD和4下列事件中,属于必然事件的是( )A掷一枚硬币,正面朝上B抛出的篮球会下落C任意的三条线段可以组成三角形D同位角相等5在一个不透明的布袋中装有60个白球和若干个黑球,除颜色外其他都相同,小红每次摸出一个球并放回,通过多次试验后发现,摸到黑球的频率稳定在0.6左右,则布袋中黑球的个数可能有( )A24B36C40D906已知是方程的一个根,则方程的另一个根为( )A-2B2C-3D37如图,抛物线与轴交于点,对称轴为,则下列结论中正确的
3、是( )AB当时,随的增大而增大CD是一元二次方程的一个根8先将抛物线关于轴作轴对称变换,所得的新抛物线的解析式为( )ABCD9如图,将图形用放大镜放大,这种图形的变化属于( )A平移B相似C旋转D对称10同时掷两个质地均匀的骰子,观察向上一面的点数,两个骰子的点数相同的概率为( )ABCD二、填空题(每小题3分,共24分)11点是二次函数图像上一点,则的值为_12已知yx2+(1a)x+2是关于x的二次函数,当x的取值范围是0 x4时,y仅在x4时取得最大值,则实数a的取值范围是_13如图,正方形ABCD的边长为8,M是AB的中点,P是BC边上的动点,连结PM,以点P为圆心,PM长为半径作
4、当与正方形ABCD的边相切时,BP的长为_14瑞士中学教师巴尔末成功的从光谱数据:,中得到巴尔末公式,从而打开光谱奥妙的大门.请你根据以上光谱数据的规律写出它的第七个数据_.15如图,在菱形中,与交于点,若,则菱形的面积为_16如图,在中,若为斜边上的中线,则的度数为_17如图,在ABCD中,点E是AD边上一点,AE:ED1:2,连接AC、BE交于点F.若SAEF1,则S四边形CDEF_.18若函数是正比例函数,则_三、解答题(共66分)19(10分)计算:(1);(2)20(6分)李明从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为1米的正方形后,剩下的部分刚好能围成一个容积
5、为15立方米的无盖长方体运输箱,且此长方体运输箱底面的长比宽多2米,现已知购买这种铁皮每平方米需20元,问购买这张矩形铁皮共花了多少钱?21(6分)如图,矩形中,将绕点从处开始按顺时针方向旋转,交边(或)于点,交边(或)于点.当旋转至处时,的旋转随即停止.(1)特殊情形:如图,发现当过点时,也恰好过点,此时是否与相似?并说明理由;(2)类比探究:如图,在旋转过程中,的值是否为定值?若是,请求出该定值;若不是,请说明理由;(3)拓展延伸:设时,的面积为,试用含的代数式表示;在旋转过程中,若时,求对应的的面积;在旋转过程中,当的面积为4.2时,求对应的的值.22(8分)有一组邻边相等的凸四边形叫做
6、“和睦四边形”,寓意是全世界和平共处,睦邻友好,共同发展.如菱形,正方形等都是“和睦四边形”.(1)如图1,BD平分ABC,ADBC,求证:四边形ABCD为“和睦四边形”;(2)如图2,直线与x轴、y轴分别交于A、B两点,点P、Q分别是线段OA、AB上的动点.点P从点A出发,以每秒4个单位长度的速度向点O运动.点Q从点A出发,以每秒5个单位长度的速度向点B运动.P、Q两点同时出发,设运动时间为t秒.当四边形BOPQ为“和睦四边形”时,求t的值;(3)如图3,抛物线与轴交于A、B两点(点A在点B的左侧),与y轴交于点,抛物线的顶点为点D当四边形COBD为“和睦四边形”,且CD=OC抛物线还满足:
7、;顶点D在以AB为直径的圆上. 点是抛物线上任意一点,且.若恒成立,求m的最小值.23(8分)阅读材料:求解一元一次方程,需要根据等式的基本性质,把方程转化为的形式;求解二元一次方程组,需要通过消元把它转化为一元一次方程来解;求解三元一次方程组,要把它转化为二元一次方程组来解;求解一元二次方程,需要把它转化为连个一元一次方程来解;求解分式方程,需要通过去分母把它转化为整式方程来解;各类方程的解法不尽相同,但是它们都用到一种共同的基本数学思想转化,即把未知转化为已知来求解. 用“转化”的数学思想,我们还可以解一些新的方程. 例如,解一元三次方程,通过因式分解把它转化为,通过解方程和,可得原方程的
8、解. 再例如,解根号下含有来知数的方程:,通过两边同时平方把它转化为,解得:. 因为,且,所以不是原方程的根,是原方程的解. (1)问题:方程的解是,_,_;(2)拓展:求方程的解.24(8分)如图,某人在山坡坡脚A处测得电视塔尖点C的仰角为60,沿山坡向上走到P处再测得点C的仰角为45,已知OA100米,山坡坡度1:2,且O、A、B在同一条直线上求电视塔OC的高度以及此人所在位置P的铅直高度PB(测倾器高度忽略不计,结果保留根号形式)25(10分)如图,已知AB是O的直径,点C在O上,延长BC至点D,使得DCBC,直线DA与O的另一个交点为E,连结AC,CE(1)求证:CDCE;(2)若AC
9、2,E30,求阴影部分(弓形)面积26(10分)某篮球队对队员进行定点投篮测试,每人每天投篮10次,现对甲、乙两名队员在五天中进球数(单位:个)进行统计,结果如下:甲1061068乙79789经过计算,甲进球的平均数为8,方差为3.2.(1)求乙进球的平均数和方差;(2)如果综合考虑平均成绩和成绩稳定性两方面的因素,从甲、乙两名队员中选出一人去参加定点投篮比赛,应选谁?为什么?参考答案一、选择题(每小题3分,共30分)1、A【分析】根据正方形的性质以及勾股定理求得,证明,根据全等三角形的性质可得,继而根据,可求得CG的长,进而根据即可求得答案.【详解】四边形ABCD是正方形,在和中,故选A.【
10、点睛】本题考查了正方形的性质,勾股定理,全等三角形的判定与性质,三角函数等知识,综合性较强,熟练掌握和灵活运用相关知识是解题的关键.注意数形结合思想的运用.2、D【分析】由正六边形的长得到的长,根据扇形面积公式=弧长半径,可得结果【详解】由题意:的长度=24,S2=弧长半径=246=72,正六边形ABCDEF的边长为6,为等边三角形,ODE=60,OD=DE=6,过O作OGDE于G,如图:,S1S2,故选:D【点睛】本题考查了正多边形和圆、正六边形的性质、扇形面积公式;熟练掌握正六边形的性质,求出弧长是解决问题的关键3、B【解析】试题分析:根据矩形的性质可得A=D=90,再由根据同角的余角相等
11、可得AEB=DFE,即可得到结果.矩形A=D=90DEF+DFE=90AEB+DEF=90AEB=DFEA=D=90,AEB=DFE故选B.考点:矩形的性质,相似三角形的判定点评:相似三角形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中半径常见的知识点,一般难度不大,需熟练掌握.4、B【分析】直接利用随机事件以及必然事件的定义分别分析得出答案【详解】A、掷一枚硬币,正面朝上,是随机事件,故此选项错误;B、抛出的篮球会下落是必然事件,故此选项正确;C、任意三条线段可以组成一个三角形是随机事件,故此选项错误;D、同位角相等,属于随机事件,故此选项错误;故选:B【点睛】本题考查的是
12、必然事件、不可能事件、随机事件的概念必然事件指在一定条件下,一定发生的事件不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件5、D【分析】设袋中有黑球x个,根据概率的定义列出方程即可求解.【详解】设袋中有黑球x个,由题意得:=0.6,解得:x=90,经检验,x=90是分式方程的解,则布袋中黑球的个数可能有90个故选D【点睛】此题主要考查概率的计算,解题的关键是根据题意设出未知数列方程求解.6、B【分析】根据一元二次方程根与系数的关系求解【详解】设另一根为m,则1m=1,解得m=1故选B【点睛】考查了一元二次方程根与系数的关系根与系数的
13、关系为:x1+x1=-,x1x1= 要求熟练运用此公式解题7、D【解析】根据二次函数图象的开口方向向下可得a是负数,与y轴的交点在正半轴可得c是正数,根据二次函数的增减性可得B选项错误,根据抛物线的对称轴结合与x轴的一个交点的坐标可以求出与x轴的另一交点坐标,也就是一元二次方程ax2bxc0的根,从而得解【详解】A、根据图象,二次函数开口方向向下,a0,故本选项错误;B、当x1时,y随x的增大而减小,故本选项错误;C、根据图象,抛物线与y轴的交点在正半轴,c0,故本选项错误;D、抛物线与x轴的一个交点坐标是(1,0),对称轴是x1,设另一交点为(x,0),1x21,x3,另一交点坐标是(3,0
14、),x3是一元二次方程ax2bxc0的一个根,故本选项正确故选:D【点睛】本题主要考查了二次函数图象与系数的关系,二次函数图象的增减性,抛物线与x轴的交点问题,熟记二次函数的性质以及函数图象与系数的关系是解题的关键8、C【分析】根据平面直角坐标系中,二次函数关于轴对称的特点得出答案【详解】根据二次函数关于轴对称的特点:两抛物线关于轴对称,二次项系数,一次项系数,常数项均互为相反数,可得:抛物线关于轴对称的新抛物线的解析式为故选:C.【点睛】本题主要考查二次函数关于轴对称的特点,熟知两抛物线关于轴对称,二次项系数,一次项系数,常数项均互为相反数,对称轴不变是关键.9、B【分析】根据放大镜成像的特
15、点,结合各变换的特点即可得出答案【详解】解:根据相似图形的定义知,用放大镜将图形放大,属于图形的形状相同,大小不相同,所以属于相似变换故选:B【点睛】本题考查相似形的识别,联系图形根据相似图形的定义得出是解题的关键10、C【分析】首先列表,然后根据表格求得所有等可能的结果与两个骰子的点数相同的情况,再根据概率公式求解即可【详解】列表得:(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)(1,2)(2,2)(
16、3,2)(4,2)(5,2)(6,2)(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)一共有36种等可能的结果,两个骰子的点数相同的有6种情况,两个骰子的点数相同的概率为: 故选:C【点睛】此题考查了树状图法与列表法求概率注意树状图法与列表法可以不重不漏的表示出所有等可能的结果用到的知识点为:概率=所求情况数与总情况数之比二、填空题(每小题3分,共24分)11、1【分析】把点代入即可求得值,将变形,代入即可【详解】解:点是二次函数图像上,则故答案为:1【点睛】本题考查了二次函数图象上点的坐标特征,根据点坐标求待定系数是解题的关键12、a1【分析】先求出抛物线的对称轴,再根据二次函数
17、的增减性列出不等式,求解即可【详解】解:0 x4时,y仅在x4时取得最大值,解得a1故答案为:a1【点睛】本题考查了二次函数的最值问题,熟练掌握二次函数的增减性和对称轴公式是解题的关键13、3或【解析】分两种情况:与直线CD相切、与直线AD相切,分别画出图形进行求解即可得.【详解】如图1中,当与直线CD相切时,设,在中,;如图2中当与直线AD相切时,设切点为K,连接PK,则,四边形PKDC是矩形,在中,综上所述,BP的长为3或【点睛】本题考查切线的性质、正方形的性质、勾股定理等知识,会用分类讨论的思想思考问题,会利用参数构建方程解决问题是关键14、【分析】分子的规律依次是,32,42,52,6
18、2,72,82,92,分母的规律是:15,26,37,48,59,610,711,所以第七个数据是【详解】解:由数据可得规律:分子是,32,42,52,62,72,82,92分母是:15,26,37,48,59,610,711,第七个数据是【点睛】主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律15、【分析】根据菱形的面积等于对角线乘积的一半求解即可.【详解】四边形是菱形,菱形的面积为;故答案为:【点睛】本题考查了菱形的性质,菱形的性质有:具有平行四边形的性质;菱形的四条边相等;菱形的对角线互相垂直,并且每一条对角线平分
19、一组对角;菱形的面积等于对角线乘积的一半.16、【分析】先根据直角三角形的性质得出AD=CD,进而根据等边对等角得出,再根据即得【详解】为斜边上的中线AD=CD故答案为:【点睛】本题考查直角三角形的性质及等腰三角形的性质,解题关键是熟知直角三角形斜边上的中线等于斜边的一半17、11【分析】先根据平行四边形的性质易得,根据相似三角形的判定可得AFECFB,再根据相似三角形的性质得到BFC的面积,进而得到AFB的面积,即可得ABC的面积,再根据平行四边形的性质即可得解.【详解】解:AE:ED1:2,AE:AD1:3,AD=BC,AE:BC1:3,ADBC,AFECFB,SBCF=9,SAFB=3,
20、SACD =SABC = SBCF+SAFB=12,S四边形CDEFSACDSAEF121=11.故答案为11.【点睛】本题主要考查相似三角形的判定与性质,平行四边形的性质等,解此题的关键在于熟练掌握其知识点.18、【分析】根据正比例函数的定义即可得出答案.【详解】函数是正比例函数-a+1=0解得:a=1故答案为1.【点睛】本题考查的是正比例函数,属于基础题型,正比例函数的表达式为:y=kx(其中k0).三、解答题(共66分)19、(1);(2)2【分析】(1)利用特殊角的三角函数值分别代入计算即可;(2)利用特殊角的三角函数值以及零次幂的值分别代入计算即可【详解】解:(1)原式;(2)原式=
21、【点睛】此题主要考查了特殊角的三角函数值,正确记忆三角函数值是解题关键20、购买这张矩形铁皮共花了700元钱【解析】设矩形铁皮的宽为x米,则长为米,根据长方形的体积公式结合长方体运输箱的容积为15立方米,即可得出关于x的一元二次方程,解之取其正值即可得出x的值,再根据矩形的面积公式结合铁皮的单价即可求出购买这张矩形铁皮的总钱数【详解】设矩形铁皮的宽为x米,则长为米,根据题意得:,整理,得:(不合题意,舍去),20 x(x+2)=2057=700.答:购买这张矩形铁皮共花了700元钱【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键21、(1)相似;(2)定值,
22、;(3)2,.【分析】(1)根据“两角相等的两个三角形相似”即可得出答案;(2)由得出,又为定值,即可得出答案;(3)先设结合得出将t=1代入中求解即可得出答案;将s=4.2代入中求解即可得出答案.【详解】(1)相似理由:,又,;(2)在旋转过程中的值为定值,理由如下:过点作于点,四边形为矩形,四边形为矩形,即在旋转过程中,的值为定值,;(3)由(2)知:,又,即:;当时,的面积,当时,解得:,(舍去)当的面积为4.2时,;【点睛】本题考查的是几何综合,难度系数较高,涉及到了相似以及矩形等相关知识点,第三问解题关键在于求出面积与AE的函数关系式.22、(1)见解析;(2)或;(3)【分析】(1
23、)由BD平分ABC推出ABD=CBD,又ABBC,所以ADB=CBD,所以ABD=ADB,即AB=AD,所以四边形ABCD为“和睦四边形”; (2)分别求出 AQ、AP、BQ、OP、OB的值,连接PQ ,因为,所以,所以,根据勾股定理求出PQ,再分类讨论t的值即可;(3)表示出点的坐标,由可得, 因为得出 所以,即,由的方程,且解出a、b的值,求出抛物线的解析式为,因为P在抛物线上,将P代入抛物线得,可得当,又因为,所以,即,得出m的最小值为;【详解】解:(1), ,四边形ABCD为“和睦四边形”;(2)由题意得:AQ=5 t ,AP=4 t ,BQ=10 - 5 t ,OP=8 - 4 t
24、,OB=6,连接PQ ,综上:;(3)由题意得:,由,且,得, 【点睛】本题是二次函数的综合性题目,给了新型定义,解题的关键是审清题目的意思.23、(1);(2)【分析】(1)利用因式分解法,即可得出结论;(2)先方程两边平方转化成整式方程,再求一元二次方程的解,最后必须检验.【详解】(1)x3+x2-2x=0,x(x-1)(x+2)=0 x=0或x-1=0或x+2=0,x1=0,x2=1,x3=-2,故答案为1,-2;(2),()给方程两边平方得:解得:,(不合题意舍去),是原方程的解;【点睛】主要考查了根据材料提供的方法解高次方程,无理方程,理解和掌握材料提供的方法是解题的关键.24、OC100米;PB米【分析】在图中共有三个直角三角形,即RtAOC、RtPCF、RtPAB,利用60的三角函数值以及坡度,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 肝硬化说课件的
- 版西安市房屋租赁合同自行成交版
- 2024版房地产开发项目土石方运输合同3篇
- 2024年度工程款结算审计合同2篇
- 手车辆销售合同模板完整版
- 物理化学期中复习 第十五章
- 人教版九年级化学第十二单元1人类重要的营养物质分层作业课件
- 2024年度电子合同在教育电子商务中的应用与法律框架
- 人教版九年级化学第九单元溶液3溶液的浓度课时1溶质的质量分数溶液的稀释或浓缩教学课件
- 新员工培训实施方案策划
- 班组长绩效考核表
- 校园管制刀具排查记录表(共1页)
- 沥青软化点试验(环球法)
- 初二上学期家长会ppt课件
- 痢菌净与6种抗菌药对鸡大肠埃希菌的体外联合药敏试验研究
- 22066kV变电站电气设计
- 高中数学一元二次不等式教案(共5页)
- 危险性较大工程确认报审表.docx
- 医院手术部(室)管理规范试题及答案
- 宋太祖赵匡胤PPT
- 中职学校《金属加工与实训》全套电子教案(含教学进度计划)(配套教材:高教版中职统编)云天课件
评论
0/150
提交评论