山东省菏泽市郓城县2023学年数学九年级第一学期期末统考试题含解析_第1页
山东省菏泽市郓城县2023学年数学九年级第一学期期末统考试题含解析_第2页
山东省菏泽市郓城县2023学年数学九年级第一学期期末统考试题含解析_第3页
山东省菏泽市郓城县2023学年数学九年级第一学期期末统考试题含解析_第4页
山东省菏泽市郓城县2023学年数学九年级第一学期期末统考试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年九上数学期末模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1有一个正方体,6个面上分别标有16这6个整数,投掷这个正方体一次,则出现向上一面的数字是奇数的概率为( )ABCD2一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都是x,根据题意,下面列出的方程正确的是( )A100(1+

2、x)=121B100(1-x)=121C100(1+x)2=121D100(1-x)2=1213某细胞的直径约为0.0000008米,该直径用科学记数法表示为()A米B米C米D米4已知点在抛物线上,则点关于抛物线对称轴的对称点坐标为()ABCD5如果一个正多边形的内角和等于720,那么这个正多边形的每一个外角等于( )A45B60C120D1356如图,以点O为位似中心,把ABC放大为原来的2倍,得到ABC,以下说法错误的是( )ABABCABCCABD点,点,点三点共线7对于反比例函数,下列说法不正确的是A图象分布在第二、四象限B当时,随的增大而增大C图象经过点(1,-2)D若点,都在图象上

3、,且,则8下列事件是不可能发生的是( )A随意掷一枚均匀的硬币两次,至少有一次反面朝上B随意掷两个均匀的骰子,朝上面的点数之和为1C今年冬天黑龙江会下雪D一个转盘被分成6个扇形,按红、白、白、红、红、白排列,转动转盘,指针停在红色区域9对于二次函数,下列说法不正确的是( )A其图象的对称轴为过且平行于轴的直线.B其最小值为1.C其图象与轴没有交点.D当时,随的增大而增大.10如图,将线段 AB 先向右平移 5 个单位,再将所得线段绕原点按顺时针方向旋转 90,得到线段 AB ,则点 B 的对应点 B的坐标是( )A(-4 , 1)B( 1, 2)C(4 ,- 1)D(1 ,- 2)二、填空题(

4、每小题3分,共24分)11如图,在ABC中,ABAC,A120,BC4,A与BC相切于点D,且交AB,AC于M,N两点,则图中阴影部分的面积是_(保留)12平行于梯形两底的直线截梯形的两腰,当两交点之间的线段长度是两底的比例中项时,我们称这条线段是梯形的“比例中线”在梯形ABCD中,AD/BC,AD=4,BC=9,点E、F分别在边AB、CD上,且EF是梯形ABCD的“比例中线”,那么=_13反比例函数图像经过点(2,3),则它的函数表达式是 14如图,为的弦,的半径为5,于点,交于点,且,则弦的长是_15如图,某园林公司承担了绿化某社区块空地的绿化任务,工人工作一段时间后,提高了工作效率.该公

5、司完成的绿化面积(单位:与工作时间(单位:)之间的函数关系如图所示,则该公司提高工作效率前每小时完成的绿化面积是_.16若一元二次方程的两根为,则_17不等式组的解集为_18方程x21的解是_三、解答题(共66分)19(10分)课本上有如下两个命题:命题1:圆的内接四边形的对角互补.命题2:如果一个四边形两组对角互补,那么该四边形的四个顶点在同一个圆上.请判断这两个命题的真、假?并选择其中一个说明理由.20(6分)如图,已知抛物线经过点和点,与轴交于点.(1)求此抛物线的解析式;(2)若点是直线下方的抛物线上一动点(不点,重合),过点作轴的平行线交直线于点,设点的横坐标为.用含的代数式表示线段

6、的长;连接,求的面积最大时点的坐标;(3)设抛物线的对称轴与交于点,点是抛物线的对称轴上一点,为轴上一点,是否存在这样的点和点,使得以点、为顶点的四边形是菱形?如果存在,请直接写出点的坐标;如果不存在,请说明理由.21(6分)因粤港澳大湾区和中国特色社会主义先行示范区的双重利好,深圳已成为国内外游客最喜欢的旅游目的地城市之一深圳著名旅游“网红打卡地”东部华侨城景区在2018年春节长假期间,共接待游客达20万人次,预计在2020年春节长假期间,将接待游客达28.8万人次(1)求东部华侨城景区2018至2020年春节长假期间接待游客人次的年平均增长率;(2)东部华侨城景区一奶茶店销售一款奶茶,每杯

7、成本价为6元,根据销售经验,在旅游旺季,若每杯定价25元,则平均每天可销售300杯,若每杯价格降低1元,则平均每天可多销售30杯2020年春节期间,店家决定进行降价促销活动,则当每杯售价定为多少元时,既能让顾客获得最大优惠,又可让店家在此款奶茶实现平均每天6300元的利润额?22(8分)在平面直角坐标系中,二次函数y=ax2+bx+c(a0)的顶点A(-3,0),与y轴交于点B(0,4),在第一象限内有一点P(m,n),且满足4m+3n=12.(1)求二次函数解析式.(2)若以点P为圆心的圆与直线AB、x轴相切,求点P的坐标.(3)若点A关于y轴的对称点为点A,点C在对称轴上,且2CBA+PA

8、O=90.求点C的坐标.23(8分)如图1,抛物线y=x2+bx+c交x轴于点A(- 4,0)和点B,交y轴于点C(0,4)(1)求抛物线的函数表达式;(2)如图2,设点Q是线段AC上的一动点,作DQx轴,交抛物线于点D,当ADC面积有最大值时,在抛物线对称轴上找一点M,使DM+AM的值最小,求出此时M的坐标;(3)点Q在直线AC上的运动过程中,是否存在点Q,使BQC为等腰三角形?若存在,直接写出点Q的坐标;若不存在,请说明理由.24(8分)如图,ABC的边BC在x轴上,且ACB=90反比例函数y=(x0)的图象经过AB边的中点D,且与AC边相交于点E,连接CD已知BC=2OB,BCD的面积为

9、1(1)求k的值;(2)若AE=BC,求点A的坐标25(10分)已知如下图1和图2中的每个小正方形的边长都是1个单位 (1)将图1中的格点,按照的规律变换得到,请你在图1中画出(2)在图2中画出一个与格点相似但相似比不等于1的格点(说明:顶点都在网格线交点处的三角形叫做格点三角形)26(10分) (1)解方程: ;(2)计算: 参考答案一、选择题(每小题3分,共30分)1、A【解析】投掷这个正方体会出现1到6共6个数字,每个数字出现的机会相同,即有6个可能结果,而这6个数中有1,3,5三个奇数,则有3种可能,根据概率公式即可得出答案【详解】解:在16这6个整数中有1,3,5三个奇数,当投掷这个

10、正方体一次,则出现向上一面的数字为奇数的概率是:=故选:A【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=2、C【详解】试题分析:对于增长率的问题的基本公式为:增长前的数量=增长后的数量.由题意,可列方程为:100(1+x)2=121,故答案为:C考点:一元二次方程的应用3、B【分析】根据绝对值小于1的正数也可以利用科学记数法表示,一般形式为且,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:根据科学计数法得:故选:B【点睛】本题主要考查科学计数法

11、,熟记科学计数法的一般形式是且是关键,注意负指数幂的书写规则是由原数左边第一个不为零的数字开始数起4、A【分析】先将点A代入抛物线的解析式中整理出一个关于a,b的等式,然后利用平方的非负性求出a,b的值,进而可求点A的坐标,然后求出抛物线的对称轴即可得出答案【详解】点在抛物线上,整理得 , ,解得 , , 抛物线的对称轴为 ,点关于抛物线对称轴的对称点坐标为故选:A【点睛】本题主要考查完全平方公式的应用、平方的非负性和二次函数的性质,掌握二次函数的性质是解题的关键5、B【分析】先用多边形的内角和公式求这个正多边形的边数为n,再根据多边形外角和等于360,可求得每个外角度数【详解】解:设这个正多

12、边形的边数为n,一个正多边形的内角和为720,180(n-2)=720,解得:n=6,这个正多边形的每一个外角是:3606=60故选:B【点睛】本题考查了多边形的内角和与外角和的知识应用方程思想求边数是解题关键6、A【分析】直接利用位似图形的性质进而分别分析得出答案【详解】解:以点O为位似中心,把ABC放大为原图形的2倍得到ABC,ABCABC,点C、点O、点C三点在同一直线上,ABAB,OB:BO2:1,故选项A错误,符合题意故选:A【点睛】此题主要考查了位似变换,正确掌握位似图形的性质是解题关键7、D【分析】根据反比例函数图象的性质对各选项分析判断后利用排除法求解【详解】A. k=20,它

13、的图象在第二、四象限,故本选项正确;B. k=20时,y随x的增大而增大,故本选项正确;C.,点(1,2)在它的图象上,故本选项正确;D. 若点A(x1,y1),B(x2,y2)都在图象上,,若x10 x2,则y2y1,故本选项错误.故选:D.【点睛】本题考查了反比例函数的图象与性质,掌握反比例函数的性质是解题的关键.8、B【分析】根据不可能事件的概念即可解答,在一定条件下必然不会发生的事件叫不可能事件.【详解】A. 随意掷一枚均匀的硬币两次,至少有一次反面朝上,可能发生,故本选项错误;B. 随意掷两个均匀的骰子,朝上面的点数之和为1,不可能发生,故本选项正确;C. 今年冬天黑龙江会下雪,可能

14、发生,故本选项错误;D. 一个转盘被分成6个扇形,按红、白、白、红、红、白排列,转动转盘,指针停在红色区域,可能发生,故本选项错误.故选B.【点睛】本题考查不可能事件,在一定条件下必然不会发生的事件叫不可能事件.9、D【分析】先将二次函数变形为顶点式,然后可根据二次函数的性质判断A、B、D三项,再根据抛物线的顶点和开口即可判断C项,进而可得答案.【详解】解:,所以抛物线的对称轴是直线:x=3,顶点坐标是(3,1);A、其图象的对称轴为过且平行于轴的直线,说法正确,本选项不符合题意;B、其最小值为1,说法正确,本选项不符合题意;C、因为抛物线的顶点是(3,1),开口向上,所以其图象与轴没有交点,

15、说法正确,本选项不符合题意;D、当时,随的增大而增大,说法错误,所以本选项符合题意.故选:D.【点睛】本题考查了二次函数的图象和性质,属于基本题型,熟练掌握抛物线的性质是解题的关键.10、D【解析】在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度;图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标常见的是旋转特殊角度如:30,45,60,90,180【详解】将线段AB先向右平移5个单位,点B(2

16、,1),连接OB,顺时针旋转90,则B对应坐标为(1,-2),故选D【点睛】本题考查了图形的平移与旋转,熟练运用平移与旋转的性质是解题的关键二、填空题(每小题3分,共24分)11、4【分析】连接AD,分别求出ABC和扇形AMN的面积,相减即可得出答案.【详解】解:连接AD,A与BC相切于点D,ADBC,ABAC,A120,ABDACD30,BDCD,AB2AD,由勾股定理知BD2+AD2AB2,即+AD2(2AD)2解得AD2,ABC的面积,扇形MAN得面积,阴影部分的面积故答案为:【点睛】本题考查的是圆中求阴影部分的面积,解题关键在于知道阴影部分面积等于三角形ABC的面积减去扇形AMN的面积

17、,要求牢记三角形面积和扇形面积的计算公式.12、【分析】先利用比例中线的定义,求出EF的长度,然后由梯形ADFE相似与梯形EFCB,得到,即可得到答案.【详解】解:如图,EF是梯形的比例中线,AD/BC,梯形ADFE相似与梯形EFCB,;故答案为:.【点睛】本题考查了相似四边形的性质,以及比例中项的定义,解题的关键是熟练掌握相似四边形的性质和比例中线的性质.13、【解析】试题分析:设反比例函数的解析式是则,得,则这个函数的表达式是故答案为考点:1待定系数法求反比例函数解析式;2待定系数法14、1【分析】连接AO,得到直角三角形,再求出OD的长,就可以利用勾股定理求解【详解】连接,半径是5,根据

18、勾股定理,因此弦的长是1【点睛】解答此题不仅要用到垂径定理,还要作出辅助线AO,这是解题的关键15、【分析】利用待定系数法求出提高效率后与的函数解析式,由此可得时,的值,然后即可得出答案.【详解】由题意,可设提高效率后得与的函数解析式为将和代入得解得因此,与的函数解析式为当时,则该公司提高工作效率前每小时完成的绿化面积故答案为:100.【点睛】本题考查了一次函数的实际应用,依据图象,利用待定系数法求出函数解析式是解题关键.16、4【分析】利用韦达定理计算即可得出答案.【详解】根据题意可得:故答案为4.【点睛】本题考查的是一元二次方程根与系数的关系,若和是方程的两个解,则.17、【解析】首先分别

19、解出两个不等式的解集,再确定不等式组的解集【详解】解答:,由得:, 由得:,不等式组的解集为,故答案为:【点睛】此题主要考查了解一元一次不等式组,关键是解不等式18、1【解析】方程利用平方根定义开方求出解即可.【详解】x21x1【点睛】本题考查直接开平方法解一元二次方程,解题关键是熟练掌握一元二次方程的解法.三、解答题(共66分)19、命题一、二均为真命题,证明见解析.【分析】利用圆周角定理可证明命题正确;利用反证法可证明命题2正确【详解】命题一、二均为真命题,命题1、命题2都是真命题证明命题1:如图,四边形ABCD为O的内接四边形,连接OA、OC,B=1,D=2,而1+2=360,B+D=3

20、60=180,即圆的内接四边形的对角互补【点睛】本题考查了命题与定理:命题写成“如果,那么”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论命题的“真”“假”是就命题的内容而言任何一个命题非真即假要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可20、(1)yx24x+1;(2)用含m的代数式表示线段PD的长为m2+1m;PBC的面积最大时点P的坐标为(,);(1)存在这样的点M和点N,使得以点C、E、M、N为顶点的四边形是菱形点M的坐标为M1(2,1),M2(2,12),M1(2,1+2)【分析】(1)根据已知抛物线y=ax2+bx+

21、1(a0)经过点A(1,0)和点B(1,0)代入即可求解;(2)先确定直线BC解析式,根据过点P作y轴的平行线交直线BC于点D,即可用含m的带上书表示出P和D的坐标进而求解;用含m的代数式表示出PBC的面积,可得S是关于m的二次函数,即可求解;(1)根据(1)中所得二次函数图象和对称轴先得点E的坐标即可写出点三个位置的点M的坐标【详解】(1)抛物线yax2+bx+1(a0)经过点A(1,0)和点B(1,0),与y轴交于点C,解得,抛物线解析式为yx24x+1; (2)设P(m,m24m+1),将点B(1,0)、C(0,1)代入得直线BC解析式为yBCx+1过点P作y轴的平行线交直线BC于点D,

22、D(m,m+1),PD(m+1)(m24m+1)m2+1m答:用含m的代数式表示线段PD的长为m2+1m SPBCSCPD+SBPDOBPDm2+m(m)2+当m时,S有最大值当m时,m24m+1P(,)答:PBC的面积最大时点P的坐标为(,)(1)存在这样的点M和点N,使得以点C、E、M、N为顶点的四边形是菱形根据题意,点E(2,1),EF=CF=2,EC=2,根据菱形的四条边相等,ME=EC=2,M(2,1-2)或(2,1+2)当EM=EF=2时,M(2,1)点M的坐标为M1(2,1),M2(2,12),M1(2,1+2)【点睛】本题考查了二次函数与方程、几何知识的综合应用,解这类问题关键

23、是善于将函数问题转化为方程问题,善于利用几何图形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件21、(1)22%;(2)22元【分析】(1)设年平均增长率为x,根据东部华侨城景区在238年春节长假期间,共接待游客达22万人次,预计在2222年春节长假期间,将接待游客达18万人次列出方程求解即可;(2)设当每杯售价定为y元时,店家在此款奶茶实现平均每天6322元的利润额,由题意得关于y的方程,解方程并对方程的解作出取舍即可【详解】解:(1)设年平均增长率为x,由题意得:22(1+x)218,解得:x12222%,x22.2(舍)答:年平均增长率为22%;(2)设当每杯售价定为y

24、元时,店家在此款奶茶实现平均每天6322元的利润额,由题意得:(y6)322+32(25y)6322,整理得:y241y+4222,解得:y122,y23让顾客获得最大优惠,y22答:当每杯售价定为22元时,既能让顾客获得最大优惠,又可让店家在此款奶茶实现平均每天6322元的利润额【点睛】本题考查了一元二次方程在实际问题中的应用,理清题中的数量关系并正确列出方程是解题的关键22、(1);(2)P(,);(3)C(-3,-5)或 (-3,)【分析】(1)设顶点式,将B点代入即可求;(2)根据4m+3n=12确定点P所在直线的解析式,再根据内切线的性质可知P点在BAO的角平分线上,求两线交点坐标即

25、为P点坐标;(3)根据角之间的关系确定C在DBA的角平分线与对称轴的交点或ABO的角平分线与对称轴的交点,通过求角平分线的解析式即可求.【详解】(1)抛物线的顶点坐标为A(-3,0),设二次函数解析式为y=a(x+3)2,将B(0,4)代入得,4=9aa= (2)如图P(m,n),且满足4m+3n=12 点P在第一象限的上,以点P为圆心的圆与直线AB、x轴相切,点P在BAO的角平分线上,BAO的角平分线:y=,x=,y=P(,)(3)C(-3,-5)或 (-3,)理由如下:如图,A(3,0),可得直线LAB的表达式为 ,P点在直线AB上,PAO=ABO=BAG, 2CBA+PAO=90,2CB

26、A=90-PAO=GAB,在对称轴上取点D,使DBA=DAB,作BEAG于G点,设D点坐标为(-3,t)则有(4-t)2+32=t2t= ,D(-3,),作DBA的角平分线交AG于点C即为所求点,设为C1DBA的角平分线BC1的解析式为y=x+4,C1的坐标为 (-3, );同理作ABO的角平分线交AG于点C即为所求,设为C2,ABO的角平分线BC2的解析式为y=3x+4, C2的坐标为(-3,-5).综上所述,点C的坐标为(-3, )或(-3,-5).【点睛】本题考查了二次函数与图形的结合,涉及的知识点角平分线的解析式的确定,切线的性质,勾股定理及图象的交点问题,涉及知识点较多,综合性较强,

27、根据条件,结合图形找准对应知识点是解答此题的关键.23、 (1);(2)点M的坐标为M(,5);(3)存在,Q(,)或(,)或(-3,1)或().【分析】(1)将A(- 4,0)、C(0,4)代入y=x2+bx+c中即可得;(2)直线AC的解析式为:,表达出DQ的长度,及ADC的面积,根据二次函数的性质得出ADC面积的最大值,从而得出D点坐标,作点D关于对称轴对称的点,确定点M,使DM+AM的值最小;(3)BQC为等腰三角形,则表达出三边,并对三边进行分类讨论,计算得出Q点的坐标即可.【详解】解:(1)将A(- 4,0)、C(0,4)代入y=x2+bx+c中得 ,解得 ,(2)直线AC的解析式为: 设Q(m,m+4) ,则 D(m,)DQ=()- (m+4)= 当m=-2时,面积有最大值此时点D的坐标为D(-2,6),D点关于对称轴对称的点D1(-1,6)直线AD1的解析式为: 当时,所以,点M的坐标为M(,5)(3),设Q(t,t+4),由得,B(1,0),,BQC为等腰三角形当BC=QC时,则,此时,Q(,)或(,);当BQ=QC时,则,解得,Q();当BQ=BC时,则,解得t=-3,Q(-3,1);综上所述,若BQC为等腰三角形,则Q(,)或(,)或(-3,1)或().【点睛】本题考查二次函数与最短路

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论