




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数的定义域为,且函数的图象关于轴对称,函数的图象关于原点对称,则( )ABCD2已知为虚数单位,复数满足,在复平面内所对的点位于( )A第一象限B第二象限C第三象限D第四象限3已知直线l、直线m和平面,它们的位置关系同时满足以下三个条
2、件:;l与m是互相垂直的异面直线若P是平面上的动点,且到l、m的距离相等,则点P的轨迹为( )A直线B椭圆C抛物线D双曲线4抛物线的焦点到双曲线的渐近线的距离为( )ABC1D5求二项式展开式中第三项的系数是( )A-672B-280C84D426记为等比数列的前项和.若,则( )A2B-4C2或-4D47的展开式存在常数项,则正整数的最小值为()A5B6C7D148函数在上取得最小值时,的值为( )A0BCD9已知,的最小值为,则的最小值为( )ABCD10(2018年天津市河西区高三三模)已知双曲线:的虚轴长为,右顶点到双曲线的一条渐近线的距离为,则双曲线的方程为( )ABCD11已知函数
3、,则下面对函数的描述正确的是( )ABCD12在一次连环交通事故中,只有一个人需要负主要责任,但在警察询问时,甲说:“主要责任在乙”;乙说:“丙应负主要责任”;丙说“甲说的对”;丁说:“反正我没有责任”四人中只有一个人说的是真话,则该事故中需要负主要责任的人是( )A甲B乙C丙D丁二、填空题:本题共4小题,每小题5分,共20分。13若幂函数为上的增函数,则实数m的值等于_ 14曲线在处的切线方程为_.15已知正数满足,则的最小值_16在推导等差数列前n项和的过程中,我们使用了倒序相加的方法,类比可以求得_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数 (其
4、中a,b为常数,且,)的图象经过点,(1)求的解析式;(2)若不等式在时恒成立,求实数的取值范围18(12分)某学校高三年级学生某次身体素质体能测试的原始成绩采用百分制,已知所有这些学生的原始成绩均分布在内,发布成绩使用等级制,各等级划分标准见下表百分制85分及以上70分到84分60分到69分60分以下等级ABCD规定:A,B,C三级为合格等级,D为不合格等级为了解该校高三年级学生身体素质情况,从中抽取了n名学生的原始成绩作为样本进行统计按照,的分组作出频率分布直方图如图1所示,样本中分数在80分及以上的所有数据的茎叶图如图2所示求n和频率分布直方图中的x,y的值,并估计该校高一年级学生成绩是
5、合格等级的概率;根据频率分布直方图,求成绩的中位数精确到;在选取的样本中,从A,D两个等级的学生中随机抽取2名学生进行调研,求至少有一名学生是A等级的概率19(12分)将前12个正整数构成的集合中的元素分成四个三元子集,使得每个三元子集中的三数都满足:其中一数等于另外两数之和,试求不同的分法种数20(12分)某地为了调查市民对“一带一路”倡议的了解程度,随机选取了100名年龄在20岁至60岁的市民进行问卷调查,并通过问卷的分数把市民划分为了解“一带一路”倡议与不了解“一带一路”倡议两类.得到下表:年龄20,3030,4040,5050,60调查人数/名30302515了解“一带一路”倡议/名1
6、228155(I)完成下面的22列联表,并判断是否有90%的把握认为以40岁为分界点对“一带一路”倡议的了解有差异(结果精确到0.001);年龄低于40岁的人数年龄不低于40岁的人数合计了解不了解合计()以频率估计概率,若在该地选出4名市民(年龄在20岁至60岁),记4名市民中了解“一带一路”倡议的人数为X,求随机变量X的分布列,数学期望和方差.附:P0.1500.1000.0500.0250.010k2.0722.7063.8415.0246.635K2=n21(12分)从1、2、3、4、5五个数字中任意取出无重复的3个数字.(I)可以组成多少个三位数?(II)可以组成多少个比300大的偶数
7、?(III)从所组成的三位数中任取一个,求该数字是大于300的奇数的概率.22(10分)已知三点,曲线上任意一点满足(1)求的方程;(2)动点在曲线上,是曲线在处的切线问:是否存在定点使得与都相交,交点分别为,且与的面积之比为常数?若存在,求的值;若不存在,说明理由参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】分析:根据奇函数与偶函数的定义,可求得函数的解析式;根据解析式确定的值。详解:令 ,则,因为为偶函数所以(1),因为 为奇函数所以(2)(1)-(2)得(3),令 代入得(4)由(3)、(4)联立得 代入得所以
8、 所以 所以选A点睛:本题考查了抽象函数解析式的求解,主要是利用方程组思想确定解析式。方法相对比较固定,需要掌握特定的技巧,属于中档题。2、B【解析】化简得到,得到答案.【详解】,故,故对应点在第二象限.故选:.【点睛】本题考查了复数的化简,对应象限,意在考查学生的计算能力.3、D【解析】作出直线m在平面内的射影直线n,假设l与n垂直,建立坐标系,求出P点轨迹即可得出答案【详解】解:设直线m在平面的射影为直线n,则l与n相交,不妨设l与n垂直,设直线m与平面的距离为d,在平面内,以l,n为x轴,y轴建立平面坐标系,则P到直线l的距离为|y|,P到直线n的距离为|x|,P到直线m的距离为,|y|
9、,即y2x2d2,P点轨迹为双曲线故选:D【点睛】本题考查空间线面位置关系、轨迹方程,考查点到直线的距离公式等基础知识,考查运算求解能力,考查函数与方程思想,是中档题4、B【解析】抛物线的焦点为:,双曲线的渐近线为:.点到渐近线的距离为:.故选B.5、C【解析】直接利用二项式定理计算得到答案.【详解】二项式展开式的通项为:,取,则第三项的系数为.故选:.【点睛】本题考查了二项式定理,意在考查学生的计算能力和应用能力.6、B【解析】利用等比数列的前项和公式求出公比,由此能求出结果【详解】为等比数列的前项和,解得,故选B【点睛】本题主要考查等比数列的性质以及其的前项和等基础知识,考查运算求解能力,
10、是基础题7、C【解析】化简二项式展开式的通项公式,令的指数为零,根据为正整数,求得的最小值.【详解】,令,则,当时,有最小值为7.故选C.【点睛】本小题主要考查二项式展开式的通项公式,考查与正整数有关问题,属于基础题.8、D【解析】根据三角函数的单调性分析求解即可.【详解】当时, .根据正弦函数的性质可知,当,即时, 取得最小值.故选:D【点睛】本题主要考查了三角函数的最值问题,属于基础题.9、C【解析】如图所示:在直角坐标系中,取点,得到的轨迹方程为,故,得到答案.【详解】如图所示:在直角坐标系中,取点,则,满足,设,过点作垂直于所在的直线与,则的最小值为,即,根据抛物线的定义知的轨迹方程为
11、:.取,故,即,当垂直于准线时等号成立.故选:.【点睛】本题考查了向量和抛物线的综合应用,根据抛物线的定义得到的轨迹方程是解题的关键.10、A【解析】分析:由虚轴长为可得,由到渐近线的距离为可解得,从而可得结果.详解:由虚轴长为可得,右顶点到双曲线的一条渐近线距离为,解得,则双曲线的方程为,故选A.点睛:用待定系数法求双曲线方程的一般步骤;作判断:根据条件判断双曲线的焦点在轴上,还是在轴上,还是两个坐标轴都有可能;设方程:根据上述判断设方程或;找关系:根据已知条件,建立关于、的方程组;得方程:解方程组,将解代入所设方程,即为所求.11、B【解析】分析:首先对函数求导,可以得到其导函数是增函数,
12、利用零点存在性定理,可以将其零点限定在某个区间上,结合函数的单调性,求得函数的最小值所满足的条件,利用不等式的传递性求得结果.详解:因为,所以,导函数在上是增函数,又,所以在上有唯一的实根,设为,且,则为的最小值点,且,即,故,故选B.点睛:该题考查的是有关函数最值的范围,首先应用导数的符号确定函数的单调区间,而此时导数的零点是无法求出确切值的,应用零点存在性定理,将导数的零点限定在某个范围内,再根据不等式的传递性求得结果.12、A【解析】假定甲说的是真话,则丙说“甲说的对”也是真话,这与四人中只有一个人说的是真话矛盾,所以假设不成立,故甲说的是假话;假定乙说的是真话,则丁说“反正我没有责任”
13、也为真话,这与四人中只有一个人说的是真话矛盾,所以假设不成立,故乙说的是假话;假定丙说的是真话,由知甲说的也是真话,这与四人中只有一个人说的是真话矛盾,所以假设不成立,故丙说的是假话;综上可得,丁说的真话,甲乙丙三人说的均为假话,即乙丙丁没有责任,所以甲负主要责任,故选A.二、填空题:本题共4小题,每小题5分,共20分。13、4【解析】由函数为幂函数得,求出的值,再由幂函数在上是增函数求出满足条件的值.【详解】由幂函数为幂函数,可得,解得或0,又幂函数在区间上是增函数, ,时满足条件,故答案为4.【点睛】本题主要考查幂函数的定义与性质,意在考查对基础知识的掌握与应用,属于中档题. 高考对幂函数
14、要求不高,只需掌握简单幂函数的图象与性质即可14、y=2【解析】分析:求函数的导数,计算和,用点斜式确定直线方程即可.详解:,又,故切线方程为.故答案为.点睛:本题考查函数导数的几何意义即函数的切线方程问题,切线问题分三类:(1)点在曲线上,在点处的切线方程求导数;切线斜率;切线方程. (2)点在曲线上,过点处的切线方程设切点;求导数;切线斜率;切线方程;将点代入直线方程求得;确定切线方程.(3)点在曲线外,步骤同(2).15、【解析】根据条件可得,然后利用基本不等式求解即可【详解】,当且仅当,即时取等号,的最小值为故答案为【点睛】本题考查了基本不等式及其应用,关键掌握“1“的代换,属基础题1
15、6、【解析】令,则:,两式相加可得:,故:,即.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、 (1)(2)【解析】试题分析:(1)把点代入函数的解析式求出的值,即可求得的解析式(2)由(1)知在上恒成立,设,利用g(x)在上是减函数,能求出实数m的最大值试题解析:(1)由题意得(2)设在上是减函数在上的最小值因为在上恒成立即得所以实数的取值范围.考点:函数恒成立问题;函数解析式的求解及常用方法18、(1),;合格等级的概率为;(2)中位数为;(3)【解析】由题意求出样本容量,再计算x、y的值,用频率估计概率值;根据频率分布直方图,计算成绩的中位数即可;由茎叶图中的数据,
16、利用列举法求出基本事件数,计算所求的概率值【详解】由题意知,样本容量,;因为成绩是合格等级人数为:人,抽取的50人中成绩是合格等级的概率为,即估计该校高一年级学生成绩是合格等级的概率为;根据频率分布直方图,计算成绩的中位数为;由茎叶图知,A等级的学生有3人,D等级的学生有人,记A等级的学生为A、B、C,D等级的学生为d、e、f、g、h,从这8人中随机抽取2人,基本事件是:AB、AC、Ad、Ae、Af、Ag、Ah、BC、Bd、Be、Bf、Bg、Bh、Cd、Ce、Cf、Cg、Ch、de、df、dg、dh、ef、eg、eh、fg、fh、gh共28个;至少有一名是A等级的基本事件是:AB、AC、Ad、
17、Ae、Af、Ag、Ah、BC、Bd、Be、Bf、Bg、Bh、Cd、Ce、Cf、Cg、Ch共18个;故所求的概率为【点睛】本题考查了频率分布直方图的应用问题,也考查了列举法求古典概型的概率问题,是基础题19、8【解析】设四个子集为,2,3,4,其中,2,3,4,设,则,所以,故,因此若,则由,得,即有,再由,必须,共得两种情况:,;以及,对应于两种分法:,;,若,则,于是,分别得,对于,得到三种分法:,;,;,对于,也得三种分法:,;,;,因此本题的分组方案共八种20、()填表见解析,有90%的把握认为以40岁为分界点“一带一路”倡议的了解有差异()见解析【解析】(1)由表格读取信息,年龄低于4
18、0岁的人数共60人,年龄不低于40岁的人数,代入K2(2)在总体未知的市民中选取4人,每位市民被选中的概率由频率估计概率算出35,所以随机变量X服从二项分布【详解】解:()根据已知数据得到如下列联表年龄低于40岁的人数年龄不低于40岁的人数合计了解402060不了解202040合计6040100K故有90%的把握认为以40岁为分界点“一带一路”倡议的了解有差异.()由题意,得市民了解“一带一路”倡议的概率为60100=3PX=0=C40PX=3=C则X的分布列为X01234P169621621681EX=43【点睛】本题要注意选取4人是在总体中选,而不是在100人的样本中选,如果看成是在样本中
19、100人选4人,很容易误用超几何分布模型求解.21、 (1) .(2)比三百大的数字有15个.(3) .【解析】分析:(1)根据乘法计数原理可知可组成个 个;(2)第一类:以2结尾百位有3种选择,十位有3种选择,则有9个,第二类:以4结尾,百位有2种选择,十位有3种选择,则共有6个;(3)比300大的数字,百位上有3种选择,十位上有4种选择,个位上有3种选择,则共有36个数字,则奇数共有21个,根据古典概型的计算公式得到结果即可.详解:(1)百位数字有5种选择,十位数字有4种选择,各位数字有3种选择,根据乘法计数原理可知可组成个 三位数。(2)各位数字上有两类:第一类:以2结尾百位有3种选择,十位有3种选择。则有9个数字。第二类:以4结尾,百位有2种选择,十位有3种选择,则共有6个数字。则比三百大的数字有15个(3)比300大的数字,百位上有3种选择,十位上有4种选择,个位上有3种选择,则共有36个数字,则奇数共有21个,则该数字是大于300的奇数的概率是 .点睛:解答排列、组合问题的角度:解答排列、组合应用题要从“分析”、“
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年的汽车租赁合同样本
- 农田水渠施工合同标准文本
- 2025智能物流系统项目软件开发合同
- 仪表工聘用合同样本
- 保险中标合同标准文本
- 隧道若爆破方案范本
- 2025年农产品买卖的合同范本
- 专业工程建设合同样本
- 公寓家电清洗合同标准文本
- 2025工业废弃土地租赁合同
- 《调整心态,积极迎考》主题心理班会
- 研究生免疫学英文课件抗体Ab
- 【学校心理健康教育系列】欣赏生命:生命树
- 电流与电压和电阻实验报告单
- 《空中领航学》8.5 精密进近程序的五边进近
- (完整版)心理辅导记录18个表格
- WS-T 428-2013 成人体重判定
- 资料员岗位季度绩效考核表
- 铺轨基地临建方案
- GB∕T 16422.2-2022 塑料 实验室光源暴露试验方法 第2部分:氙弧灯
- 《环境规划与管理》课件[1]
评论
0/150
提交评论