版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1在含有3件次品的10件产品中,任取2件,恰好取到1件次品的概率为ABCD2函数=的部分图像如图所示,则的单调递减区间为( )ABCD3l:与两坐标轴所围成的三角形的面积为
2、A6B1CD34的展开式中的系数是( )A-1152B48C1200D23525线性回归方程对应的直线至少经过其样本数据点中的一个点;若两个变量的线性相关性越强,则相关系数的绝对值越接近于;在某项测量中,测量结果服从正态分布,若位于区域内的概率为,则位于区域内的概率为;对分类变量与的随机变量K2的观测值k来说,k越小,判断“与有关系”的把握越大其中真命题的序号为( )ABCD6用反证法证明命题“已知函数在上单调,则在上至多有一个零点”时,要做的假设是( )A在上没有零点B在上至少有一个零点C在上恰好有两个零点D在上至少有两个零点7(3x-13xA7B-7C21D-218函数的最小正周期是()A
3、BCD9已知复数在复平面内对应的点在第一象限,则实数m的取值范围是( )ABCD10已知则( )ABCD11已知命题:函数的值域是;为了得到函数的图象,只需把函数图象上的所有点向右平移个单位长度;当或时,幂函数的图象都是一条直线;已知函数,若互不相等,且,则的取值范围是.其中正确的命题个数为( )A4B3C2D112在如图所示的计算的值的程序框图中,判断框内应填入ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知函数的导函数为,若,则的值为_.14已知为偶函数,当时,则_15圆锥的母线长是,高是,则其侧面积是_.16化简_三、解答题:共70分。解答应写出文字说明、证明过程或演算步
4、骤。17(12分)(1)求函数的最大值;(2)若函数有两个零点,求实数a的取值范围18(12分)如图是某市年月日至日的空气质量指数趋势图,某人随机选择年月日至月日中的某一天到达该市,并停留天.(1)求此人到达当日空气质量指数大于的概率;(2)设是此人停留期间空气质量指数小于的天数,求的分布列与数学期望;(3)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)19(12分)随着社会的进步与发展,中国的网民数量急剧增加.下表是中国从年网民人数及互联网普及率、手机网民人数(单位:亿)及手机网民普及率的相关数据.年份网民人数互联网普及率手机网民人数手机网民普及率20092010201
5、12012201320142015201620172018(互联网普及率(网民人数/人口总数)100%;手机网民普及率(手机网民人数/人口总数)100%)()从这十年中随机选取一年,求该年手机网民人数占网民总人数比值超过80%的概率;()分别从网民人数超过6亿的年份中任选两年,记为手机网民普及率超过50%的年数,求的分布列及数学期望;()若记年中国网民人数的方差为,手机网民人数的方差为,试判断与的大小关系.(只需写出结论)20(12分)在直角坐标系中,曲线的参数方程是(为参数),以该直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为()写出曲线的普通方程和直线的直角坐标方
6、程;()设点,直线与曲线相交于,两点,且,求实数的值21(12分)设函数,(1)讨论函数的单调性;(2)设,若存在正实数,使得对任意都有恒成立,求实数的取值范围.22(10分)已知数列的前项和为,且(1)求数列的通项公式;(2)若数列的前项和为,证明:参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】分析:先求出基本事件的总数,再求出恰好取到1件次品包含的基本事件个数,由此即可求出.详解:含有3件次品的10件产品中,任取2件,基本事件的总数,恰好取到1件次品包含的基本事件个数,恰好取到1件次品的概率.故选:A.点睛:本题
7、考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.2、D【解析】由五点作图知,解得,所以,令,解得,故单调减区间为(,),故选D.考点:三角函数图像与性质3、D【解析】先求出直线与坐标轴的交点,再求三角形的面积得解.【详解】当x=0时,y=2,当y=0时,x=3,所以三角形的面积为.故选:D【点睛】本题主要考查直线与坐标轴的交点的坐标的求法,意在考查学生对该知识的理解掌握水平和分析推理能力.4、B【解析】先把多项式化简,再用二项式定理展开式中的通项求出特定项的系数,求出对应项的系数即可.【详解】解:,的二项式定理展开式的通项公式为,的二项式定理展开式的通项公式为
8、,所以的展开式中的系数为.故选:B.【点睛】本题主要考查了二项式定理的应用以及利用二项式展开式的通项公式求展开式中某项的系数问题,是基础题目.5、D【解析】对于,因为线性回归方程是由最小二乘法计算出来的,所以它不一定经过其样本数据点,一定经过,故错误;对于,根据随机变量的相关系数知,两个随机变量相关性越强,则相关系数的绝对值越接近于1,故正确;对于,变量服从正态分布,则,故正确;对于,随机变量的观测值越大,判断“与有关系”的把握越大,故错误.故选D.点睛:在回归分析中易误认为样本数据必在回归直线上,实质上回归直线方程必过点,可能所有的样本数据点都不在直线上.6、D【解析】分析:利用反证法证明,
9、假设一定是原命题的完全否定,从而可得结果.详解: 因为“至多有一个”的否定是“至少有两个”,所以用反证法证明命题“已知函数在上单调,则在上至多有一个零点”时,要做的假设是在上至少有两个零点,故选D.点睛:反证法的适用范围是,(1)否定性命题;(2)结论涉及“至多”、“至少”、“无限”、“唯一”等词语的命题;(3)命题成立非常明显,直接证明所用的理论较少,且不容易证明,而其逆否命题非常容易证明;(4)要讨论的情况很复杂,而反面情况较少7、C【解析】直接利用二项展开式的通项公式,求出x-3对应的r值,再代入通项求系数【详解】T当7-5r3=-3时,即r=6x-3的系数是【点睛】二项展开式中项的系数
10、与二项式系数要注意区别.8、C【解析】根据三角函数的周期公式,进行计算,即可求解【详解】由角函数的周期公式,可得函数的周期,又由绝对值的周期减半,即为最小正周期为,故选C【点睛】本题主要考查了三角函数的周期的计算,其中解答中熟记余弦函数的图象与性质是解答的关键,着重考查了计算与求解能力,属于基础题9、A【解析】由实部虚部均大于0联立不等式组求解【详解】解:复数在复平面内对应的点在第一象限,解得实数的取值范围是故选:【点睛】本题考查复数的代数表示法及其几何意义,考查不等式组的解法,是基础题10、C【解析】由二项式定理及利用赋值法即令和,两式相加可得,结合最高次系数的值即可得结果.【详解】 中,取
11、,得 , 取,得, 所以, 即, 又, 则, 故选C【点睛】本题主要考查了二项式定理及利用赋值法求二项式展开式的系数,属于中档题.11、C【解析】:根据指数函数的单调性进行判断;根据三角函数的图形关系进行判断;根据幂函数的定义和性质进行判断;根据函数与方程的关系,利用数形结合进行判断.【详解】因为是增函数,所以当时,函数的值域是,故正确;函数图象上的所有点向右平移个单位长度,得到函数的图像,故错误;当时,直线挖去一个点,当时,幂函数的图形是一条直线,故错误;作出的图像如图所示: 所以在上递减,在上递增,在上递减,又因为在上有两个,在上有一个,不妨设,则,即,则的范围即为的范围,由,得,则有,即
12、的范围是,所以正确;所以正确的命题有2个,故选C.【点睛】该题考查的是有关真命题的个数问题,在结题的过程中,涉及到的知识点有指数函数的单调性,函数图像的平移变换,零指数幂的条件以及数形结合思想的应用,灵活掌握基础知识是解题的关键.12、D【解析】程序运行过程中,各变量值如下表所示:第一圈:S=0+1,i=5,第二圈:S=1+3,i=9,第三圈:S=1+3+5,i=13,依此类推,第503圈:1+3+5+2013,i=2017,退出循环,其中判断框内应填入的条件是:i2013,本题选择D选项.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】求函数的导函数,令即可求出的值.【详解】因
13、为 令 则所以【点睛】本题主要考查了函数的导数,及导函数求值,属于中档题.14、【解析】由偶函数的性质直接求解即可【详解】.故答案为【点睛】本题考查函数的奇偶性,对数函数的运算,考查运算求解能力15、【解析】计算出圆锥底面圆的半径,然后利用圆锥的侧面积公式可计算出圆锥的侧面积.【详解】由题意知,圆锥的底面半径为,因此,圆锥的侧面积为,故答案为:.【点睛】本题考查圆锥的侧面积,解题的关键就是要求出圆锥的母线长和底面圆的半径,利用圆锥的侧面积公式进行计算,考查计算能力,属于中等题.16、.【解析】分析:利用,逆用二项式定理求和,再根据展开式特点结合棣莫弗定理求值.或者构造和的二项式展开式求和,再利
14、用和周期性解决问题. 详解:方法一:因为 展开式中所有有理项的和,又因为,所以展开式中所有有理项的和为,因此.方法二:原式= +可得: 点睛:展开式的应用:可求解与二项式系数有关的求值,常采用赋值法.有关组合式的求值证明,关键是要合理地构造二项式,并将它展开进行分析判断. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、 (1) (2) 【解析】(1)求出利用导函数的符号判断函数的单调性然后求解最大值;(2)分情况:在时,在时,在时,判断函数的单调性,求解函数的极值与0的关系,然后求解零点个数【详解】(1)对求导数,在时,为增函数,在时为减函数,从而的最大值为(2)在时,在
15、R上为增函数,且,故无零点在时,在R上单增,又,故在R上只有一个零点在时,由可知在时有唯一极小值,若,无零点,若,只有一个零点,若,而由(1)可知,在时为减函数,在时,从而在与上各有一个零点综上讨论可知:时,有两个零点【点睛】本题考查函数的导数的应用,函数的单调性以及函数的极值的求法,函数的零点个数的判断,是难题对于函数的零点问题,它和方程的根的问题,和两个函数的交点问题是同一个问题,可以互相转化;在转化为两个函数交点时,如果是一个常函数,另一个是含自变量的函数,注意让含有自变量的函数式子尽量简单一些18、 (1);(2)答案见解析;(3)答案见解析.【解析】分析:(1) 由空气质量指数趋势图
16、,直接利用古典概型概率公式可得“此人到达当日空气质量指数大于” 的概率;(2)由题意可知,的可能取值为,分别利用古典概型概率公式求出相应的概率,由此能求出故的分布列,利用期望公式可得;(3)由图知,从日开始,连续三天(日,日,日)空气质量指数方差最大.详解:(1)设 “此人到达当日空气质量指数大于”的事件为,则;(2)的可能取值为,则,故的分布列为:所以.(3)由图知,从日开始,连续三天(日,日,日)空气质量指数方差最大.点睛:本题主要考查互斥事件的概率公式、以及离散型随机变量的分布列与数学期望,属于中档题. 求解数学期望问题,首先正确要理解题意,其次要准确无误的找出随机变量的所以可能值,计算
17、出相应的概率,写出随机变量的分布列,正确运用均值、方差的公式进行计算,也就是要过三关:(1)阅读理解关;(2)概率计算关;(3)公式应用关.19、();()分布列见解析,;()【解析】()由表格得出手机网民人数占网民总人数比值超过的年份,由概率公式计算即可;()由表格得出的可能取值,求出对应的概率,列出分布列,计算数学期望即可;()观察两组数据,可以发现网民人数集中在之间的人数多于手机网民人数,则网民人数比较集中,而手机网民人数较为分散,由此可得出.【详解】解:()设事件:“从这十年中随机选取一年,该年手机网民人数占网民总人数比值超过”.由题意可知:该年手机网民人数占网民总人数比值超过80%的
18、年份为,共6个 则. ()网民人数超过6亿的年份有共六年,其中手机网民普及率超过 的年份有这年.所以的取值为.所以, , .随机变量的分布列为 . ().【点睛】本题主要考查了计算古典概型的概率,离散型随机变量的分布列,数学期望等,属于中档题.20、();()或或【解析】()根据参数方程与普通方程互化原则、极坐标与直角坐标互化原则可直接求得结果;()为直线上一点,以为定点可写出直线参数方程标准形式,将直线参数方程代入曲线的普通方程进行整理,从而利用参数的几何意义可构造方程,从而得到关于的方程,解方程求得结果.【详解】()由得:即曲线的普通方程为:由,得:直线的直角坐标方程为:,即()直线的参数方程可以写为:(为参数)设两点对应的参数分别为将直线的参数方程代入曲线的普通方程可得:即:,解得:或或【点睛】本题考查参数方程化普通方程、极坐标方程化直角坐标方程、直线参数方程的应用,关键是能够利用直线参数方程中参数的几何意义,将距离之和转变为韦达定理的形式,从而可构造出关于所求变量的方程,属于常考题型.21、(1)见解析;(2)【解析】(1)对函数求导,对a分类讨论得到导函数的正负进而得到单调性;(2)对a分情况讨论,在不同的范围下,得到函数的正负,进而去掉绝
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度房地产项目投资合作合同
- 成本分摊协议 2篇
- 2024年度广告发布合同:全国范围内户外广告发布
- 二零二四年度城市供水系统不锈钢水箱采购与安装合同
- 二零二四年度商标许可合同标的及许可条件
- 2024年度二手房买卖合同中的绿化景观配套协议
- 团课教练合同(2篇)
- 二零二四年度信息技术咨询与服务合同标的详细介绍
- 合伙协议合同(2篇)
- 工薪贷款补充协议样本
- 雨雪冰冻天气应急预案(30篇)
- 校园周边接送交通管理制度
- 青岛大学《民法总论》2022-2023学年第一学期期末试卷
- 专题05三角函数与解三角形(选择填空题)(原卷版)
- 外研版三起小学四年级英语下册教案全册表格式
- 2024年消防月全员消防安全知识专题培训-附20起典型火灾案例
- 公务员2023年国考《申论》(副省卷)题和参考答案
- 宫颈癌保留生育能力的手术
- 名创优品课件教学课件
- 2024苏教版科学小学六年级上册第5单元《科技改变生活》教学设计及教学反思
- 人教版八年级英语上册期末专项复习-完形填空和阅读理解(含答案)
评论
0/150
提交评论