版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1在15个村庄中有7个村庄交通不方便,现从中任意选10个村庄,用表示这10个村庄中交通不方便的村庄数,下列概率等于的是( )ABCD2已知变量,之间具有线性相关关系,其回归方程为,若,则的值为( )ABCD13已知,“函数有零点”是“函
2、数在上是减函数”的( )A充分不必要条件B必要不充分条件C充要条件D即不充分也不必要条件4如图,线段AB=8,点C在线段AB上,且AC=2,P为线段CB上一动点,点A绕着C旋转后与点B绕点P旋转后重合于点D,设CP=x,CPD的面积为f(x)求f(x)的最大值()A B 2C3 D 5设a,b,c为三角形ABC三边长,a1,bc,若logc+ba+logc-bA锐角三角形 B直角三角形 C钝角三角形 D无法确定6对四组数据进行统计,获得如图所示的散点图,关于其相关系数的比较,正确的是()Ar2r40r3r1Br4r20r1r3Cr4r20r3r1Dr2r40r10,r30,图(2)与图(4)是
3、负相关,故r20,r40,且图(1)与图(2)的样本点集中在一条直线附近,因此r2r40r3r1.故选:A.【点睛】本小题主要考查散点图,考查相关系数、正相关和负相关的理解,属于基础题.7、A【解析】分析:先求展开式的通项公式,根据展开式中的系数与关系,即可求得答案.详解:展开式的通项公式,可得 展开式中含项: 即展开式中含的系数为.故选A.点睛:本题考查了二项式定理的应用问题,利用二项展开式的通项公式求展开式中某项的系数是解题关键.8、A【解析】取BD中点,可证,为直线AC与底面BCD所成角。【详解】取BD中点,由,又侧面底面BCD,所以。所以为直线AC与底面BCD所成角。,所以。选A.【点
4、睛】本题考查线面角,用几何法求线面角要一作、二证、三求,要有线面垂直才有线面角。9、C【解析】,故选C.10、D【解析】已知180对应弧度,则转化为弧度数为.本题选择D选项.11、D【解析】分析:样本点均在直线上,则变量间的相关系数,A错误;样本点可能都不在直线上,B错误;样本点可能在直线上,即预报变量对应的估计值可能与可以相等,C错误;相关系数与符号相同D正确.详解:选项A:所有样本点都在,则变量间的相关系数,相关系数可以为 , 故A错误.选项B:回归直线必过样本中心点,但样本点可能都不在回归直线上,故B错误.选项C:样本点可能在直线上,即可以存在预报变量对应的估计值与没有误差,故C错误.选
5、项D:相关系数与符号相同,若斜率,则,样本点分布从左至右上升,变量与正相关,故D正确.点睛:本题考查线性回归分析的相关系数、样本点、回归直线、样本中心点等基本数据,基本概念的准确把握是解题关键.12、A【解析】根据逆否命题和原命题的真假一致性得,当时命题不成立,则命题也不成立,所以选A.【详解】根据逆否命题和原命题的真假一致性得,当时命题不成立,则命题也不成立,所以当时命题不成立,则命题也不成立,故答案为:A【点睛】(1)本题主要考查数学归纳法和逆否命题,意在考查学生对这些知识的掌握水平和分析推理能力.(2) 互为逆否关系的命题同真同假,即原命题与逆否命题的真假性相同,原命题的逆命题和否命题的
6、真假性相同.所以,如果某些命题(特别是含有否定概念的命题)的真假性难以判断,一般可以判断它的逆否命题的真假性.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设复数根据复数的几何意义可知的轨迹为圆;再根据点和圆的位置关系,及的几何意义即可求得点到圆上距离的最小值,即为的最小值.【详解】复数满足方程,设(),则,在复平面内轨迹是以为圆心,以2为半径的圆;,意义为圆上的点到的距离,由点与圆的几何性质可知,的最小值为,故答案为:.【点睛】本题考查了复数几何意义的综合应用,点和圆的位置关系及距离最值的求法,属于中档题.14、【解析】从5条线段中任取3条共有10种情况,将能构成三角形的情况
7、数列出,即可得概率.【详解】从5条线段中任取3条,共有种情况,其中,能构成三角形的有:3,4,5; 3,5,7; 3,7,9; 4,5,7; 4,7,9; 5,7,9. 共6种情况;即能构成三角形的概率是,故答案为:【点睛】本题考查了古典概型的概率公式,注意统计出满足条件的情况数,再除以总情况数即可,属于基础题.15、【解析】设,则,然后根据定积分公式计算可得.【详解】设,则,所以=.故答案为: .【点睛】本题考查了定积分的计算,属基础题.16、【解析】求出双曲线离心率的表达式,求解最小值,求出m,即可求得双曲线渐近线方程【详解】解:双曲线M:,显然,双曲线的离心率,当且仅当时取等号,此时双曲
8、线M:,则渐近线方程为:故答案为:【点睛】本题考查双曲线渐近线方程的求法,考查基本不等式的应用,属于基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(I)答案不唯一,具体见解析(II)见解析【解析】(I) 根据题目条件,求出函数的导数,通过讨论的范围,得到函数的单调区间,从而求得函数的极值的个数。(II)根据是的一个极值点,得出,再根据,求出的范围,再利用()中的结论,得出的单调性,观察得出,对与的大小关系进行分类讨论,结合函数单调性,即可证明。【详解】(I),或1、当,即时,若,则,单调递增;若,则,单调递减;若,则,单调递增;此时,有两个极值点:,2、当,即时,f
9、(x)单调递增,此时无极值点.3、当,即时,若,则,单调递增;若,则,单调递减;若,则,单调递增;此时,有两个极值点:,故当时,无极值点:当时,有两个极值点.(II)由()知,且,由(1)中3知:在上单调递增,在上单调递减,在上单调递增又(这一步是此题的关键点,观察力)1、当即时,在上单调递减,此时,成立.2、当即时,成立.3、当即时,在上单调递增.此时,成立.综上所述,当时,“=”成立.【点睛】本题主要考查了求含有参数的函数的极值点的个数问题,以及利用利用导数证明不等式问题,解题时用到了分类讨论的思想。18、 (1) 的直角坐标方程是.直线的普通方程为. (2) .【解析】(1)消去参数后可
10、得的普通方程,把化成,利用互化公式可得的直角方程.(2)设点,则,利用在椭圆上可得的直角方程,联立直线的普通方程和的直角坐标方程可得的直角坐标.【详解】解:(1)由,得,将互化公式代上式,得,故圆的直角坐标方程是.由,得,即.所以直线的普通方程为.(2)设点.由中点坐标公式得曲线的直角坐标方程为.联立,解得,或.故点的直角坐标是.【点睛】极坐标转化为直角坐标,关键是,而直角坐标转化为极坐标,关键是参数方程化为直角方法,关键是消去参数,消参的方法有反解消参、平方消参、交轨法等19、(1)0.025;(2)见解析;(3)见解析【解析】(1)根据面积之和为1,列出关系式,解出a的值. (2)首先根据
11、频率分布直方图中的数据计算A,B这两个试验区优质产品、非优质产品的总和,然后根据表格填入数据,再根据公式计算即可.(3)以样本频率代表概率,则属于二项分布,利用二项分布的概率公式计算分布列和数学期望即可.【详解】(1)根据频率分布直方图数据,得:,解得(2)根据频率分布直方图得:样本中优质产品有,列联表如下表所示:试验区试验区合计优质产品102030非优质产品603090合计7050120 , 没有的把握认为优质产品与,两个试验区有关系(3)由已知从这批产品中随机抽取一件为优质产品的概率是,随机抽取4件中含有优质产品的件数X的可能取值为0,1,2,3,4,且,的分布列为:01234E(X) 【
12、点睛】本题考查频率分布直方图,独立性检验以及二项分布的分布列和期望值的计算,同时考查了学生分析问题的能力和计算能力,属于中档题.20、(1)见解析;(2)见解析【解析】分析:(1),所以点是棱的中点,所以,所以,所以平面. (2)先证明平面所以,又因为,所以平面.详解:证明:(1)因为在中, ,所以点是棱的中点.又点是棱的中点,所以是的中位线,所以.因为底面是矩形,以,所以.又平面, 平面,所以平面.(2)因为平面平面, 平面,平面平面,所以平面.又平面,所以.因为, ,平面,平面,所以平面.点睛:线面垂直的判定和性质定理的应用是高考一直以来的一个热点,把握该知识点的关键在于判定定理和性质定理
13、要熟练掌握理解,见到面面垂直一般都要想到其性质定理,这是解题的关键.21、(1);(2)66人;(3)有的把握认为“礼让斑马线”行为与驾龄关【解析】(1)利用所给数据计算、,求出回归系数,写出回归直线方程;(2)由(1)中的回归直线方程计算x=7时的值即可;(3)由列联表中数据计算K2,对照临界值得出结论【详解】(1)由表中数据知,所求回归直线方程为(2)由(1)知,令,则人.(3)由表中数据得,根据统计有的把握认为“礼让斑马线”行为与驾龄关【点睛】本题考查了线性回归方程与独立性检验的应用问题,是基础题22、(1)(2)【解析】(1)由得,分,三种情况讨论,即可得出结果;(2)先由的解集为空集,得恒成立,再由绝对值不等式的性质求出的最大值,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 代销合作合同范本
- 快消品平面广告制作合同案例
- 电脑租赁合同谈判要点
- 全面供货合同样本集
- 有关网络期货交易合同范例
- 术中唤醒手术
- 《k线组合淘金术》课件
- 产后护理身材护理
- 小学生道德讲堂活动
- 海绵刷项目可行性研究报告
- 英文版肺功能检查课件(PPT 50页)
- 《有机合成》说播课课件(全国高中化学优质课大赛获奖案例)
- 高中地理经纬网PPT通用课件
- 城市景观生态
- 五年级英语上册第六单元(新版pep)完美版(课堂PPT)
- 2022年修理厂改革实施方案范文
- 败血症PPT优质课件
- 铁路建设项目工程质量管理办法
- 架空输电线路检修规范
- 【课件】第六单元第十二节外国影视音乐课件-2021-2022学年高中音乐人音版(2019)必修音乐鉴赏
- 血凝报告单模板
评论
0/150
提交评论