回归分析法概念及原理_第1页
回归分析法概念及原理_第2页
回归分析法概念及原理_第3页
回归分析法概念及原理_第4页
回归分析法概念及原理_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、回归分析法概念及原理回归分析定义:利用数据统计原理,对大量统计数据进行数学处理,并确定因变 量与某些自变量的相关关系,建立一个相关性较好的回归方程(函数表达式), 并加以外推,用于预测今后的因变量的变化的分析方法。分类:根据因变量和自变量的个数来分类:一元回归分析;多元回归分析;根据因变量和自变量的函数表达式来分类:线性回归分析;非线性回归分析;几点说明:通常情况下,线性回归分析是回归分析法中最基本的方法,当遇到非线性回 归分析时,可以借助数学手段将其化为线性回归;因此,主要研究线性回归 问题,一点线性回归问题得到解决,非线性回归也就迎刃而解了,例如,取 对数使得乘法变成加法等;当然,有些非线

2、性回归也可以直接进行,如多项 式回归等;在社会经济现象中,很难确定因变量和自变量之间的关系,它们大多是随机 性的,只有通过大量统计观察才能找出其中的规律。随机分析是利用统计学 原理来描述随机变量相关关系的一种方法;由回归分析法的定义知道,回归分析可以简单的理解为信息分析与预测。信 息即统计数据,分析即对信息进行数学处理,预测就是加以外推,也就是适 当扩大已有自变量取值范围,并承认该回归方程在该扩大的定义域内成立, 然后就可以在该定义域上取值进行“未来预测”。当然,还可以对回归方程进 行有效控制;相关关系可以分为确定关系和不确定关系。但是不论是确定关系或者不确定 关系,只要有相关关系,都可以选择

3、一适当的数学关系式,用以说明一个或 几个变量变动时,另一变量或几个变量平均变动的情况。相关关系线性相关| |非线性相关|完全相关| 不相关正相关I |负相关|正相关| |负相关回归分析主要解决的问题:回归分析主要解决方面的问题;确定变量之间是否存在相关关系,若存在,则找出数学表达式;根据一个或几个变量的值,预测或控制另一个或几个变量的值,且要估计这 种控制或预测可以达到何种精确度。回归模型:回归模型一元回归多元回归线性回归非线性回归线性回归非线性回归回归分析步骤:根据自变量与因变量的现有数据以及关系,初步设定回归方程;求出合理的回归系数;进行相关性检验,确定相关系数;在符合相关性要求后,即可根

4、据已得的回归方程与具体条件相结合,来确定 事物的未来状况,并计算预测值的置信区间;回归分析的有效性和注意事项:有效性:用回归分析法进行预测首先要对各个自变量做出预测。若各个自变量可 以由人工控制或易于预测,而且回归方程也较为符合实际,则应用回归预测是有 效的,否则就很难应用;注意事项:为使回归方程较能符合实际,首先应尽可能定性判断自变量的可能种 类和个数,并在观察事物发展规律的基础上定性判断回归方程的可能类型;其次, 力求掌握较充分的高质量统计数据,再运用统计方法,利用数学工具和相关软件 从定量方面计算或改进定性判断。回归分析中的几个常用概念:实际值:实际观测到的研究对象特征数据值;理论值:根

5、据实际值我们可以得到一条倾向线,用数学方法拟合这条曲线,可以 得到数学模型,根据这个数学模型计算出来的、与实际值相对应的值,称为理论 值;预测值:实际上也是根据数学模型计算出来的理论值,但它是与未来对应的理论 值。表示符号:实际值,用J表示;理论值,用J表示;预测值,用J表示。ii0+Unary Linear Regression+ 一元线性回归,就是只涉及一个自变量的回归;自变量和因变量之间的关系是 线性关系的回归;因变量与自变量之间的关系用一条线性方程来表示的回归。方法步骤:确定回归模型:由于我们研究的是一元线性回归,因此其回归模型可表示为:J = 8 +叩+ ; 其中,j是因变量;.是自

6、变量;e是误差项;8和8 1称为模型参数(回归系数)。求出回归系数:这里的回归系数的求解,就要用一定的方法,使得该系数应用于该方程是“合理 的”。最常用的一种方法就是最小二乘估计法。最小二乘法是测量工作和科学实 验中最常用的一种数据处理方法,其基本原理是,根据实验观测得到的自变量x 和因变量y之间的一组对应关系,找出一个给定类型的函数j = f 3),使得它所 取的值f (X ), f (X ), ,f (X )与观测值j , j ,,j在某 TOC o 1-5 h z 12n12n种尺度下最接近,即在各点处的偏差的平方和达到最小,即(j - j )2 = X(j - 8 - 8 x )2 =

7、最小。这种方法求的的8和8将使得拟合直线 i ii 01 i01i=1i =1j = 8 +18 X中的j和X之间的关系与实际数据的误差比其他任何直线都小。01根据最小二乘法的要求,可以推导得到最小二乘法的计算公式:nxy 一i=1nLx 2 一i人i=1i=1-1亍 -1亍x = _ J x , y = _ Jni=1nyi ;i=1、P0 = y -P1 x相关性检验:从而得到回归方程。至于J对于若干组具体数据(x , y )都可算出回归系数B , B i i01与x之间是否真有如回归模型所描述的关系,或者说用所得的回归模型去拟合实 际数据是否有足够好的近似,并没有得到判明。因此,必须对回

8、归模型描述实际 数据的近似程度,也即对所得的回归模型的可信程度进行检验,称为相关性检验。E Xy -Z x y=i i相关系数是衡量一组测量数据气,y,线性相关程度的参量,其定义为:r = xy - xy ,或者 r = 据-x2序-y 2),:nZx2-Zx2nZy2-Zy2* i=1i=1i=1i=1r值在0v | r |W1中。| r |越接近于1,x,y之间线性好;r为正,直线斜率为 正,称为正相关;r为负,直线斜率为负,称为负相关。| r |接近于0,则测量 们必点分散种判冒嚣盈鬻的方论测用数判好坏都能求出量数据不宜所以我 判断的方法是| r | v r0时,测量数据是非线性的.r称

9、为相关系数的起码值,与 测量次数n有关,如下表:0相关系数起码值r0nr0nr0nr031.00090.798150.64140.990100.765160.62350.959110.735170.60660.917120.708180.59070.874130.684190.57580.834140.661200.561在进行一元线性回归之前应先求出r值,再与r比较,若| r | r0,则x和y具 置信区间的,定:口当确定相关性后,就可以对置信区间进行确定,就可以结合实际情况,确定事物 未来的状况了。回归分析的最主要的应用就在于“预测”,而预测是不是准确的, 就得有一个衡量的工具。它就是置信

10、区间。或者从另外一方面来说,回归方程是 由数理统计得出的,它反映的是实际数据的统计规律,所以,根据回归方程所得 的预测值y只是对应于x的单点预测估计值,预测值应该有一个置信区间。这 样来看,计)算置信区间就是很有必要的。置信区间:才(y - y )2S 2 = ,=1 n-2 ,其中S 2是a 2的无偏估计量,S 2称为剩余方差,S称为剩余 标准差。注:该表达式的自由度为n-2是因为有2个限制变量x和y,故对于给 定的x0,y值的概率为0.95的置信区间是:(y - 1.96S, y + 1.96S)。点击参看置 信区间的确定内容。+Example实验数据如下表:城镇居民家庭人 均可支配收入城

11、市人均住宅面 积城镇居民家庭人 均可支配收入城市人均住宅面 积343.46.74838.917.0477.67.25160.317.8739.110.05425.118.71373.913.55854.019.41510.213.76280.020.31700.614.26859.620.82026.614.87702.822.82577.415.28472.223.73496.215.79421.625.04283.016.310493.026.1步骤一:先画出散点图,进行观察:程序如下: clf x=343.4 477.6 739.1 1373.9 1510.2 1700.6 2026.6

12、 2577.4 3496.2 4283.0 4838.95160.3 5425.1 5854.0 6280.0 6859.6 7702.8 8472.2 9421.6 0493.0;y=6.7 7.2 10.0 13.5 13.7 14.2 14.8 15.2 15.7 16.3 17.0 17.8 18.7 19.4 20.3 20.8 22.823.7 25.0 26.1;plot(x,y,x) xlabel(城镇居民家庭人均可支配收入)ylabel(城市人均住宅面积)在MATALB中的运行结果:301000 2000 3000 4000 5000 6000 7000 8000 9000

13、10000 城镇居民家庭人均可支配收入25OO 52 1可以看到,除了个别点除外,基本上所有的点都分布在一条直线的附近。而且自变量只有一个,因此可以假设其回归模型为:J = 8。+叩+ ;步骤二:求出回归系数,过程根据最小而乘法的公式计算;计算公式为:2 P= n 2 八 八i=i P = y - *xi=1/ i=1、21i /i=1七匕其中-1亍 -1亍x = _ x , y = _ y ; n i =1n ii=1编程: n1,n2=size(x);lxx=0;lxy=0for k=1:n2lxx=lxx+(x(k)-mean(x)A2lxy=lxy+(x(k)-mean(x)*(y(k

14、)-mean(y) end b=lxy/lxxa=mean(y)-b*mean(x)在MATLAB中的运行结果:求得 P =0.0017 P =9.4866, 故:y =9.4866+0.0017x 为所求。 10整个数据拟合如下: clf x=343.4 477.6 739.1 1373.9 1510.2 1700.6 2026.6 2577.4 3496.2 4283.0 4838.95160.3 5425.1 5854.0 6280.0 6859.6 7702.8 8472.2 9421.6 0493.0;y=6.7 7.2 10.0 13.5 13.7 14.2 14.8 15.2 1

15、5.7 16.3 17.0 17.8 18.7 19.4 20.3 20.8 22.823.7 25.0 26.1;plot(x,y,x) xlabel(城镇居民家庭人均可支配收入)ylabel(城市人均住宅面积) n1,n2=size(x);lxx=0;lxy=0for k=1:n2lxx=lxx+(x(k)-mean(x)A2lxy=lxy+(x(k)-mean(x)*(y(k)-mean(y)endb=lxy/lxxa=mean(y)-b*mean(x)n1,n2=size(x);lxx=0;lxy=0for k=1:n2lxx=lxx+(x(k)-mean(x)A2lxy=lxy+(x(k)-mean(x)*(y(k)-mean(y)endb=lxy/lxxa=mean(y)-b*mean(x)xx=linspace(0,12000,500)yy=a+b*xx;hold onplot(xx,yy,b-)text(6000,15,FitFunction: y=a+b*x)在MATLAB中运行得到拟合图:步骤三:相关性检验;r = :_-=,同理编程计算出相关系数为:(x2 - x2)(y2 - y2)r=0.964740192922406由于r的绝对值很接近1,所以相

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论