2022年专升本高等数学练习题_第1页
2022年专升本高等数学练习题_第2页
2022年专升本高等数学练习题_第3页
2022年专升本高等数学练习题_第4页
2022年专升本高等数学练习题_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1已知f 1x,g x x11,就f g x b1x2yx e1 的反函数3ylog21xarcsin1x的定义域1x4判定f x lnx1x2的奇偶性5arcsin3arccos36lim1 nsin12n155n7lim x 42x2128lim1 nx2n1x2n9x lim sinxarctan110 lim xx ln1xln xx11求间断点,判定类型;(1)f x e11(2)f x sinxxx x1(3)f x xsin1,x0 x1,x012证明方程xasinxb,a0,b0)至少有一个不超过 a的正根;13ylnarcsinx1的连续区间是0处连续,就 a的取值范畴为14

2、已知f x xasin1 x,x0在x0,x015已知f x ax , x 0 在 x 0 处可导,就a与b的关系为sin bx , x 016设 f x 可导,就lim f sinh f 0h 0 2 h17已知 y e xxe y,求 dyx 0dx18已知 y x 2x 2 在M 点处的切线斜率为 3,就M 的坐标为19已知 y 3 sin 2 x,就 dy x 0 x20d e 1arctan x dx e 121证明 f x x在 x 0 处连续但不行导;222lim x sin2 x x 2 arctan x23lim sin 2 x 1 sin 2 x4 cos2 x224已知

3、lim x 1 x 2 ax3 x 42 b,求 a和b的值x25limx 0 x eln1 1x x 26x lim0 x ln x27lim x 22 x x 2x x28limsec x 2xtan 29x lim e111xlnx30limsin x 0 x x31lim x 2tanxtan3x32求f x lnx的单调区间、极值;x133求f x exe的水平和垂直渐近线;问 题 : 如 改 为34 求f x 1ex2的 水 平 和 垂 直 渐 近 线 ;1ex2f x 1x呢?1ex35求底面积与高的和为定值 a的圆柱体的最大体积;36求曲线xt2在t1 处的切线和法线方程;x4

4、3dxyet382x1xdx37xx3 1dx2x14392x15 1dx401xx2dx41sinxdx42x31sin2x2cos24332ln x dx x44x22x32dx45x212dx3 x3 x46x21x5dx问题:如改为x2x225dx呢?x247 f x dx48如f x dxF x C,就2 x f1x3dx49f x 322在区间1,8上的平均值为x50已知x3f2 t dtx,就f16,f8051求ysinx在0,2内的图形与x轴所围成的图形的面积;52设f x连续,就limx axxaxf t dta532x31sin2xdx2542 22x 42 x dxln

5、2ex551xex2dx563 0tan xdx5712dxx e0 x58lim x 0 xx 2ln1 0 cos2x tdt 590sin 2x cos 3xdx600 2te dt t 612 x 2 1x 2 dxa62设 f x为 a a的奇函数,证明 af x dx 0631)证明:0 1x m1 x ndx 0 1x n1 x m dx, , m n N;(2)设 f x为连续的奇函数,证明:0 xf t dt为偶函数;64 x 1 2 y 2 21 的面积为3 465求曲线 y e与其过原点的切线及y 轴所围成图形的面积;66已知曲线 y x与其上一点 2 M处的切线及 x轴

6、所围成的图形的面积为1,求点 M 的坐标;1267解微分方程;(1) yy;(2)yxex;yx e;(3)y2xyx 2xe;(4)y4xxy2y2 x y(7)(5)yy0;(6)xy2y;(8)过点M1,1 且斜率到处为 x的曲线方程为;(9)y y 0 满意 0 1,y 0 1 的特解为;(10)求 xy y 1 的通解;(11)已知可导函数 f x满意 f x 2 f t dt x,求 f x ;x0(12)1;yx y68过点 M 1,1, 2 且垂直于 z轴的平面方程为;69过点 M 1,1, 2 且平行于 z轴的直线方程为;70与向量 a 1, 1,2 和 b 0,2,3 都垂

7、直的单位向量是;71向量 a 1, 1,2 和 b 0,2,3 的夹角为;72顶点为 A 1, 1,0,B 2,0,3,C 0,2, 1 的三角形的面积为;73求过点 M 11, 2,0,M 2 2,3,1 和 M 30,1, 2 的平面方程;74求过点 M 3,1, 2 且过 z轴的平面方程;75求过点 M 3,1, 2 且与直线L 1 : x 1 y z 1 和2 2 1x y 2 z 4 都垂直的直线方程;L 2 :1 2 276求过点 M 2,1,3 且与直线 x 1 y 1 z垂直相交的直线方程;3 2 177求过点 M 1, 2,3,与 z轴相交且与直线 x y 3 z 2 垂直的

8、4 3 2直线方程;78判定直线 x 1 y 1 z 2 与平面 x 2 y z 3 0 的位置关系;3 1 179求过点 M 2, 1,3 关于直线 x 1 y 2 z的对称点的坐标;2 3 180已知 M 12, 1,4,M 20,1,2,求线段 M M的垂直平分面的方程;81已知 A 1,0,0,B 0,2,1,试在 z轴上求一点 C ,使得 ABC的面积最小,并求出最小面积;82求定义域;(1)zarccos xy;问题:如改为zarcsinxy呢?(2)zx2y2;83设zln tan x y,求z, z和dz;xy84已知zlnyx2y2,求2zy x85已知z2 x yxeyz,

9、求z1,0y86求zln1x2y2在点1,2处的全微分;87已知zxyxy,求 z, zxy88求f x y , 2 exxy22 y的极值89求斜边长为定值 l 的直角三角形的最大周长;90ex2y2dxdy,D x2y21D914x22,y dxdyD x2y24第一象限内的部分D92设D: 1x1,0y1,就x eydxdyD93求2 xy dxdy,其中 D 由y2 x,y0,x1 所围成;D94求Dx2dxdy,其中 D 由x2, y2x,xyy1 所围成;y95求sinx2y d,其中D:x2242D96求1x dxdy,其中 D 由y2 x,y0,x1 所围成;D972 d_,D:3x24y21;D98将2dx02x x 2f x y dy化为极坐标的形式;099交换积分次序(1)1 0dx2xf x y dy;(2)2dy2yf x y dx;1y20(3)1 0dyef x y dx;(4)1dy1yf x y dxey00100判定无穷级数的敛散性;( 1)n;( 2)1n;( 3)n3 1 n;n1n1n1n112n(4)1;(5)ln3n;( 6)n1nsinn;n1n 2n1n13n(9)nnn;(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论