![最新5G中的关键技术解读_第1页](http://file4.renrendoc.com/view/657e64c9c949970643c527cd4e57c43d/657e64c9c949970643c527cd4e57c43d1.gif)
![最新5G中的关键技术解读_第2页](http://file4.renrendoc.com/view/657e64c9c949970643c527cd4e57c43d/657e64c9c949970643c527cd4e57c43d2.gif)
![最新5G中的关键技术解读_第3页](http://file4.renrendoc.com/view/657e64c9c949970643c527cd4e57c43d/657e64c9c949970643c527cd4e57c43d3.gif)
![最新5G中的关键技术解读_第4页](http://file4.renrendoc.com/view/657e64c9c949970643c527cd4e57c43d/657e64c9c949970643c527cd4e57c43d4.gif)
![最新5G中的关键技术解读_第5页](http://file4.renrendoc.com/view/657e64c9c949970643c527cd4e57c43d/657e64c9c949970643c527cd4e57c43d5.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、5G中的关键技术解读4G的到来仿佛还在昨日,5G却已近在咫尺。根据3GPP的规划,5G的大规 模测试和部署,最早将于2019年开始。也就是说,最快还有一年多的时间, 我们就可以享受到5G带来的全新体验。然而作为全球通信标准,5G的意义当 然不局限于网速更快,移动宽带体验更优,它的使命在于连接新行业,催生新 服务,比如推进工业自动化、大规模物联网、智能家居、自动驾驶等。这些行 业和服务都对网络提出了更高的要求,要求网络更可靠、低时延、广覆盖、更 安全。各行各业迥异的需求迫切呼唤一种灵活、高效、可扩展的全新网络。5G 应运而生。超I氏密邮可靠IE 相低耕一图1:5G的应用领域作为下一代蜂窝网络,5
2、G网络以5G NR (New Radio)统一空中接口(unified airinterface)为基础,为满足未来十年及以后不断扩展的全球连接5G nr 肄牙mcffl对4ff聊善沛政添藏,a拳 5G NRs沛丰湖sHffls、mW、Fr、5G 恭ffla-ffl5JgFrw 4G LTE 甘*翟、,叫 曲丑首陛驾S4S苗sfaf牙。Quanomm 、mi 5G NRsmw、w HHOFDM 注fNs患苫悻嫡( optimized OFDMbased waveforms and mu-up-e access 一 orthogona- Frequency Division Mu-up-exin
3、g、 Bwffl)、2 刖“DHsfa滴沛丰(A f-exze framework )、w 苗3驾藏斗 烯肄牙(Advanced wire-essiechno-ogies )。Advamorto.老Ey1stechnoo旬软。旦 rrN-ECLOF 口 MbBseQ w#Yeforn!5 8 330- nfp言ra frc9m 兽orkWHHOFDM 注fNs患苫悻嫡( optimized OFDMbased waveforms and mu-up-e access ) 5G NRy-affl5-fl-*IMfflsI浏冶ffl、葬湖*lffl*HH 05 、H甘 OFDM 肄牙藩咔盼s4G
4、LTE 昔 wFi 131、33HHS swl、Hini 5Gffl好。OFDM肄牙翔浦田刈s雌善ft强功能,例如通过加窗或滤波增强频率本地化、在不同用户与服务间提高多路 传输效率,以及创建单载波OFDM波形,实现高能效上行链路传输。简单归纳起来,OFDM有以下优势:口复杂度低(Low complexity ):可以 兼容低复杂度的信号接收器,比如移动设备口频谱效率高(High spectral efficiency:):可以高效使用MIMO,提高数据传输效率。口能耗少(Low power consumption ):可以通过单载波波形,实现高能效上行链路传输。口 频率局域化(Frequenc
5、ylocalization ):可以通过加窗和滤波,提升频率局域 化,最大限度减少信号干扰。可扩展子栽波图4:可扩展子载波不过OFDM体系也需要创新改造,才能满足5G的需求:1.通过子载波间隔扩展实现可扩展的OFDM参数配置(Scalable OFDM numerology with scaling of subcarrier spacing)Ouldoor and small c&llOutdoor and macro coverage图5: 5G 不同频谱的带宽和子载波间隔Indocii wideibaid TDD v qmmWave皿畋他目前,通过OFDM子载波之间的15 kHz间隔(固
6、定的OFDM参数配置),LTE最高可支持20 MHz的载波带宽。为了支持更丰富的频谱类型/带(为了连接尽可能丰富的设备,5G将利用所有能利用的频谱,如毫米微波、非授权频段)和部署方式。5G NR将引入可扩展的OFDM间隔参数配置。这一点至关重要,因为当FFT ( Fast Fourier Transform,快速傅里叶变换)为更大带宽扩展尺寸时,必须保证不会增加处理的复杂性。而为了支持多种部署模式的不同信道宽度,如上图所示,5G NR必须适应同一部署下不同的参数配置,在统 一的框架下提高多路传输效率。另外,5G NR也能跨参数实现载波聚合,比如聚合毫米波和6GHz以下频段的 载波,因而也就具有
7、更强的连接性能。2.通过OFDM加窗提高多路传输效率(Enabling efficient services multiplexing with windowed OFDM)前文提 到,5G将被应用于大规模物联网,这意味着会有数十亿设备在相互连接,5G 势必要提高多路传输的效率,以应对大规模物联网的挑战。为了相邻频带不相 互干扰,频带内和频带外信号辐射必须尽可能小。OFDM能实现波形后处理 (post-processing),如时域加窗或频域滤波,来提升频率局域化。如下图,利用5G NR OFDM的参数配置,5G可以在相同的频道内进行多路传输。WidebandLvryv CP(e.g. eMB
8、B),.二 -:i .ad-?si;图6:5G NR可针对不同服务进行高效多路传输面对这一需求,Qualcomm正积极推动CP-ODFM (循环前缀正交频分复用)加窗技术,大量的分析和试验结果表明,它能有效减少频带内和频带外的辐射,从而显著提高频率局域化。CP-ODFM技术的效果已被实践证实,现在正 广泛应用于LTE网络体系中。二.灵活的框架设计显然,要实现5G的大范围 服务,仅有基于OFDM优化的波形和多址接入技术是远远不够的。设计5G NR的同时,我们还在设计一种灵活的5G网络架构,以进一步提高5G服务 多路传输的效率。这种灵活性即体现在频域,更体现在时域上,5G NR的框架 能充分满足5
9、G的不同的服务和应用场景。“亏丈行虫了技;图7:5G NR灵活的框架设计可扩展的时间间隔(Scalable Transmission Time Interval (TTI)相比当前的 4G LTE网络,5G NR将使时延降低一个数量级。目前LTE网络中,TTI (时间 间隔)固定在1 ms(毫秒)。为此,3GPP在4G演进的过程中提出一个降低 时延的项目。尽管技术细节还不得而知,但这一项目的规划目标就是要将一次 傅里叶变换的时延降低为目前的1/8 (即从1.14ms降低至1433(微秒)。而为了支持长时延需求”的服务,5G NR的灵活框架设计可以向上 或向下扩展TTI (即使用更长或更短的TT
10、I),依具体需求而变。除此之外,5G NR同样支持同一频率下以不同的TTI进行多路传输。比如,高Qos(服务 质量)要求的移动宽带服务可以选择使用500 3的TTI,而不是像LTE时代只 能用标准TTI,同时,另一个对时延很敏感的服务可以用上更短的TTI,比如 140 3,而不是非得等到下一个子帧到来,也就是500 3以后。也就是说上 次传输结束以后,两者可以同时开始,从而节省了等待时间。自包含集成子帧(Self-contained integrated subframe )自包含集成子帧是 另一项关键技术,对降低时延、向前兼容和其他一系列5G特性意义重大。通 过把数据的传输(transmis
11、sion )和确认(acknowledgement)包含在一个 子帧内,时延可显著降低。下图展示的是一个TDD下行链路子帧,从网络到设 备的数据传输和从设备发回的确认信号都在同一个子帧内。而且通过5G NR独 立集成子帧,每个TTI都以模块化处理完成,比如同意下载一数据下行一保护 间隔一上行确认。报乳 控削SS据保护:Tk;E时没图8:5G NR独立集成子帧模块化同样支持不同类型的子帧为未来的各种新服务进行多路传输,配合5GNR框架支持空白子帧和空白频率资源的设计,使其拥有向前兼容性未来 的新型服务可以以同步或非同步状态部署在同一频率内。三.先进的新型无线技术(Advanced wireles
12、s technologies )我们在开头提 至U过,5G必然是在充分利用现有技术的基础之上,充分创新才能实现的,而 4G LTE正是目前最先进的移动网络平台,5G在演进的同时,LTE本身也还在 不断进化(比如最近实现的千兆级4G+),5G不可避免地要利用目前用在4G LTE上的先进技术,如载波聚合,MIMO技术,非共享频谱的利用,等等;可 以说,5G在很大程度上是以4G为基础的。1.大规模 MIMO ( Massive MIMO )图9:大规模MIMOMIMO ( Multiple-Input Multiple-Output)技术是目前无线通信领域的一个 重要创新研究项目,通过智能使用多根天
13、线(设备端或基站端),发射或接受 更多的信号空间流,能显著提高信道容量;而通过智能波束成型,将射频的能 量集中在一个方向上,可以提高信号的覆盖范围。这两项优势足以使其成为5G NR的核心技术之一,因此我们一直在努力推进MIMO技术的演化,比如从 2x2提高到了目前4乂4 MIMO。但更多的天线也意为着占用更多的空间,要在空间有限的设备中容纳进更多天线显然不现实,所以,只能在基站端叠加更多MIMO。从目前的理论来看,5G NR可以在基站端使用最多256根天线,而 通过天线的二维排布,可以实现3D波束成型,从而提高信道容量和覆盖。2.毫米波(mmWave)图10 :毫米波对无线通信稍有了解的人应该
14、知道,频率越高,能传输的信息量也越大,也就 是体验到的网速更快。正是因为这一优势,我们把目光聚焦在了频率极高的毫 米波上(目前毫米波主要应用于射电天文学、遥感等领域)。全新5G技术正 首次将频率大于24 GHz以上频段(通常称为毫米波)应用于移动宽带通信。 大量可用的高频段频谱可提供极致数据传输速度和容量,这将重塑移动体验。 但毫米波的利用并非易事,使用毫米波频段传输更容易造成路径受阻与损耗(信号衍射能力有限)。通常情况下,毫米波频段传输的信号甚至无法穿透墙 体(回想一下你家的5GHz Wi-Fi有多容易被墙体屏蔽),此外,它还面临着 波形和能量消耗等问题。不过,我们已经在天线和信号处理技术方
15、面取得了一些进展。通过利用基站和设备内的多根天线,配合智能波束成型和波束追踪算法,可以显著提升5G毫米波覆盖范围,排除干扰。同时,5G NR还将充分利用6GHz以下频段和4G LTE,让毫米波的连接性能更上一层。图11: Qualcomm 5G NF毫米波试验在毫米波领域,Qualcomm 一直走在前沿。我们实现了移动设备中的 802.11ad60 GHz芯片的商业化,除此之外,我们也在积极研发和测试28GHz 频段(可扩展至其他频段)的毫米波原型。不久前,我们在一个人口密集的住 宅区附近做了一次模拟实验,现场数据显示,视距内(line-of-sight)的覆盖 可达350米,而非视距(Non
16、-Line-of-Sight)的覆盖可达150米。另外,我 们最近还发布了第一块5G毫米波调制解调器,骁龙X50,以支持今年下半年 的5G毫米波早期实验部署。频谱共享(Spectrum sharing techniques )Il I图12 :频谱共享使用共享频谱和非授权频谱,可将5G扩展到多个维度,实现更大容量、使用 更多频谱、支持新的部署场景。这不仅将使拥有授权频谱的移动运营商受益, 而且会为没有授权频谱的厂商创造机会,如有线运营商、企业和物联网垂直行 业,使他们能够充分利用5G NR技术。5G NR原生地支持所有频谱类型, 并通过前向兼容灵活地利用全新的频谱共享模式。这为在5G中创新的使
17、用频 谱共享技术创造了机遇。我们在频谱共享技术领域,同样走在前沿,比如LTE- U,LAA, LWA, CBRS, LSA,还有 MulteFire,这些技术已经用在了 LTE 上,5G NR将在这基础上加以创新。MliSltf ktLWA (LIE * Wnfl)CBRS ISA孑Nft皎找社卓Mu!(eFiff甄于 N 眄Mui炼Fit!LTE Advanced Pro fiGHiCTMa(LIE图13:5G NR原生地支持所有频谱类型先进的信道编码设计(Advanced channel coding design )目前LTE网络的编码还不足以应对未来的数据传输需求,因此迫切需要一种更
18、高效的信道编码设计,以提高数据传输速率,并利用更大的编码信息块契合移 动宽带流量配置,同时,还要继续提高现有信道编码技术(如LTE Turbo)的 性能极限。在这方面,Qualcomm促成了行业统一采用LDPC信道编码, LDPC编码已被证明,对于需要一个高效混合HARQ体系的无线衰落信道来 说,它是理想的解决方案。从下图可以看出,LDPC的传输效率远超LTE Turbo,且易平行化的解码设计,能以低复杂度和低时延,扩展达到更高的传 输速率。Mornnahzed Throughpiut (for given cloct rate)TurboCd de rare 帆)正,言国市土蟀图14 :大信息块长度下不同信道编码的表现总结:我们在开头提到,5G并非凭空而来,它的实现有赖于对现有技术的深入研究利用,比如用在LTE Advanced和LTE Advanced Pro上的载波聚合、LTE物联网、车联网等技术。未来两年,4G和5G将平行发展,一边是4G的 继续成熟,一边是5G的创新研发。根据3GPP的规划,Release 15预计会在 2018年6月发布,不过由于行业的推动,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- Revision Being a good guest Period 2(说课稿)-2024-2025学年人教PEP版(2024)英语三年级上册
- 2024秋九年级语文上册 第五单元 18《怀疑与学问》说课稿 新人教版
- Unit5 What will you do this weekend?Lesson25(说课稿)-2023-2024学年人教精通版英语四年级下册
- 5 国家机构有哪些 第三课时 《国家机关的产生》 说课稿-2024-2025学年道德与法治六年级上册统编版
- 《 关注新词新语让语言鲜活生动》说课稿 2024-2025学年统编版高中语文必修上册
- 1~5的认识和加减法《第几》(说课稿)-2024-2025学年一年级上册数学人教版
- Module 9 Unit 1 It's winter.(说课稿)-2024-2025学年外研版(一起)英语二年级上册
- 1《水到哪里去了》说课稿-2023-2024学年科学五年级下册冀人版
- 22狐假虎威(说课稿)-2024-2025学年语文二年级上册统编版
- Unit 3 Powerful Music Exploring and Using 说课稿-2024-2025学年高中英语重大版(2019)必修第一册
- 《幼儿教师职业道德》教案
- 2021年高考山东卷化学试题(含答案解析)
- 客服百问百答
- GB/T 19181-2018生咖啡分级方法导则
- GA/T 766-2020人精液PSA检测金标试剂条法
- 胃食管反流病优质课件
- 品管圈活动提高氧气雾化吸入注意事项知晓率
- 农产品质量安全控制课件
- 幼儿园中班健康:《小河马的大口罩》 课件
- 管道工程污水管网监理规划(共44)
- 洪屏抽水蓄能电站达标投产策划方案
评论
0/150
提交评论