安徽省芜湖市2021-2022学年中考押题数学预测卷含解析_第1页
安徽省芜湖市2021-2022学年中考押题数学预测卷含解析_第2页
安徽省芜湖市2021-2022学年中考押题数学预测卷含解析_第3页
安徽省芜湖市2021-2022学年中考押题数学预测卷含解析_第4页
安徽省芜湖市2021-2022学年中考押题数学预测卷含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,O与直线l1相离,圆心O到直线l1的距离OB2,OA4,将直线l1绕点A逆时针旋转30后得到的直线l2刚好与O相切于点C,则OC( )A1B2C3D42四组数中:1和1;1和1;0和0;和1,互为倒数的是()ABCD3如图,矩形ABCD的边长AD=3,AB=2,E为AB的

2、中点,F在边BC上,且BF=2FC,AF分别与DE、DB相交于点M,N,则MN的长为( )ABCD4根据下表中的二次函数的自变量与函数的对应值,可判断该二次函数的图象与轴( )A只有一个交点B有两个交点,且它们分别在轴两侧C有两个交点,且它们均在轴同侧D无交点5如图,直线AB与直线CD相交于点O,E是COB内一点,且OEAB,AOC=35,则EOD的度数是( )A155B145C135D1256如图,在RtABC中,ACB90,CD是AB边上的中线,AC8,BC6,则ACD的正切值是()ABCD7已知抛物线c:y=x2+2x3,将抛物线c平移得到抛物线c,如果两条抛物线,关于直线x=1对称,那

3、么下列说法正确的是()A将抛物线c沿x轴向右平移个单位得到抛物线cB将抛物线c沿x轴向右平移4个单位得到抛物线cC将抛物线c沿x轴向右平移个单位得到抛物线cD将抛物线c沿x轴向右平移6个单位得到抛物线c8一元二次方程x28x2=0,配方的结果是()A(x+4)2=18B(x+4)2=14C(x4)2=18D(x4)2=149如图,ABC中,ABAC,CAD为ABC的外角,观察图中尺规作图的痕迹,则下列结论错误的是( )ADAE=BBEAC=CCAEBCDDAE=EAC10-2的绝对值是()A2B-2C2D二、填空题(共7小题,每小题3分,满分21分)11写出经过点(0,0),(2,0)的一个二

4、次函数的解析式_(写一个即可)12如图,点分别在正三角形的三边上,且也是正三角形.若的边长为,的边长为,则的内切圆半径为_13如图,DACE于点A,CDAB,1=30,则D=_14三人中有两人性别相同的概率是_.15如图,ABC中,A=80,B=40,BC的垂直平分线交AB于点D,联结DC如果AD=2,BD=6,那么ADC的周长为 16如图,A、D是O上的两个点,BC是直径,若D40,则OAC_度17已知:如图,ABC的面积为12,点D、E分别是边AB、AC的中点,则四边形BCED的面积为_三、解答题(共7小题,满分69分)18(10分)如图,AB是O的直径,点C是AB的中点,连接AC并延长至

5、点D,使CDAC,点E是OB上一点,且OEEB=23,CE的延长线交DB的延长线于点F,AF交O于点H,连接BH求证:BD是O的切线;(2)当OB2时,求BH的长19(5分)如图,一棵大树在一次强台风中折断倒下,未折断树杆与地面仍保持垂直的关系,而折断部分与未折断树杆形成的夹角树杆旁有一座与地面垂直的铁塔,测得米,塔高米在某一时刻的太阳照射下,未折断树杆落在地面的影子长为米,且点、在同一条直线上,点、也在同一条直线上求这棵大树没有折断前的高度(结果精确到,参考数据:,)20(8分)在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器

6、乐,要求七年级学生人人参加,并且每人只能参加其中一项活动教务处在该校七年级学生中随机抽取了100名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整)请解答下列问题:请补全条形统计图和扇形统计图;在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?若该校七年级学生共有500人,请估计其中参加“书法”项目活动的有多少人?学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器乐”活动项目的女生的概率是多少?21(10分)如图,在平行四边形ABCD中,E为BC边上一点,连结AE、BD且AE=AB求证:ABE=EAD;若AEB=2ADB,求证:

7、四边形ABCD是菱形22(10分)如图,己知AB是C的直径,C为圆上一点,D是BC的中点,CHAB于H,垂足为H,连OD交弦BC于E,交CH于F,联结EH.(1)求证:BHEBCO.(2)若OC=4,BH=1,求EH的长.23(12分)如图,在正方形ABCD的外部,分别以CD,AD为底作等腰RtCDE、等腰RtDAF,连接AE、CF,交点为O(1)求证:CDFADE;(2)若AF1,求四边形ABCO的周长24(14分)吴京同学根据学习函数的经验,对一个新函数y的图象和性质进行了如下探究,请帮他把探究过程补充完整该函数的自变量x的取值范围是 列表:x210123456y m1 5n1表中m ,n

8、 描点、连线在下面的格点图中,建立适当的平面直角坐标系xOy中,描出上表中各对对应值为坐标的点(其中x为横坐标,y为纵坐标),并根据描出的点画出该函数的图象:观察所画出的函数图象,写出该函数的两条性质: ; 参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】先利用三角函数计算出OAB60,再根据旋转的性质得CAB30,根据切线的性质得OCAC,从而得到OAC30,然后根据含30度的直角三角形三边的关系可得到OC的长【详解】解:在RtABO中,sinOAB,OAB60,直线l1绕点A逆时针旋转30后得到的直线l1刚好与O相切于点C,CAB30,OCAC,OAC60

9、3030,在RtOAC中,OCOA1故选B【点睛】本题考查了直线与圆的位置关系:设O的半径为r,圆心O到直线l的距离为d,则直线l和O相交dr;直线l和O相切dr;直线l和O相离dr也考查了旋转的性质2、C【解析】根据倒数的定义,分别进行判断即可得出答案【详解】1和1;11=1,故此选项正确;-1和1;-11=-1,故此选项错误;0和0;00=0,故此选项错误;和1,-(-1)=1,故此选项正确;互为倒数的是:,故选C【点睛】此题主要考查了倒数的概念及性质倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数3、B【解析】过F作FHAD于H,交ED于O,于是得到FH=AB=1,根据勾股定理得

10、到AF=,根据平行线分线段成比例定理得到,OH=AE=,由相似三角形的性质得到=,求得AM=AF=,根据相似三角形的性质得到=,求得AN=AF=,即可得到结论【详解】过F作FHAD于H,交ED于O,则FH=AB=1BF=1FC,BC=AD=3,BF=AH=1,FC=HD=1,AF=,OHAE,=,OH=AE=,OF=FHOH=1=,AEFO,AMEFMO,=,AM=AF=,ADBF,ANDFNB,=,AN=AF=,MN=ANAM=,故选B【点睛】构造相似三角形是本题的关键,且求长度问题一般需用到勾股定理来解决,常作垂线4、B【解析】根据表中数据可得抛物线的对称轴为x=1,抛物线的开口方向向上,

11、再根据抛物线的对称性即可作出判断.【详解】解:由题意得抛物线的对称轴为x=1,抛物线的开口方向向上则该二次函数的图像与轴有两个交点,且它们分别在轴两侧故选B.【点睛】本题考查二次函数的性质,属于基础应用题,只需学生熟练掌握抛物线的对称性,即可完成.5、D【解析】解: EOAB, 故选D.6、D【解析】根据直角三角形斜边上的中线等于斜边的一半可得CDAD,再根据等边对等角的性质可得AACD,然后根据正切函数的定义列式求出A的正切值,即为tanACD的值【详解】CD是AB边上的中线,CDAD,AACD,ACB90,BC6,AC8,tanA,tanACD的值故选D【点睛】本题考查了锐角三角函数的定义

12、,直角三角形斜边上的中线等于斜边的一半的性质,等边对等角的性质,求出AACD是解本题的关键7、B【解析】抛物线C:y=x2+2x3=(x+1)24,抛物线对称轴为x=1抛物线与y轴的交点为A(0,3)则与A点以对称轴对称的点是B(2,3)若将抛物线C平移到C,并且C,C关于直线x=1对称,就是要将B点平移后以对称轴x=1与A点对称则B点平移后坐标应为(4,3),因此将抛物线C向右平移4个单位故选B8、C【解析】x2-8x=2,x2-8x+16=1,(x-4)2=1故选C【点睛】本题考查了解一元二次方程-配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程

13、的方法叫配方法9、D【解析】解:根据图中尺规作图的痕迹,可得DAE=B,故A选项正确,AEBC,故C选项正确,EAC=C,故B选项正确,ABAC,CB,CAEDAE,故D选项错误,故选D【点睛】本题考查作图复杂作图;平行线的判定与性质;三角形的外角性质10、A【解析】根据绝对值的性质进行解答即可【详解】解:1的绝对值是:1故选:A【点睛】此题考查绝对值,难度不大二、填空题(共7小题,每小题3分,满分21分)11、yx2+2x(答案不唯一)【解析】设此二次函数的解析式为yax(x+2),令a1即可【详解】抛物线过点(0,0),(2,0),可设此二次函数的解析式为yax(x+2),把a1代入,得y

14、x2+2x故答案为yx2+2x(答案不唯一)【点睛】本题考查的是待定系数法求二次函数解析式,此题属开放性题目,答案不唯一12、【解析】根据ABC、EFD都是等边三角形,可证得AEFBDECDF,即可求得AE+AF=AE+BE=a,然后根据切线长定理得到AH=(AE+AF-EF)=(a-b);,再根据直角三角形的性质即可求出AEF的内切圆半径【详解】解:如图1,I是ABC的内切圆,由切线长定理可得:AD=AE,BD=BF,CE=CF,AD=AE=(AB+AC)-(BD+CE)= (AB+AC)-(BF+CF)=(AB+AC-BC),如图2,ABC,DEF都为正三角形,AB=BC=CA,EF=FD

15、=DE,BAC=B=C=FED=EFD=EDF=60,1+2=2+3=120,1=3;在AEF和CFD中,AEFCFD(AAS);同理可证:AEFCFDBDE;BE=AF,即AE+AF=AE+BE=a设M是AEF的内心,过点M作MHAE于H,则根据图1的结论得:AH=(AE+AF-EF)=(a-b);MA平分BAC,HAM=30;HM=AHtan30=(a-b)=故答案为:【点睛】本题主要考查的是三角形的内切圆、等边三角形的性质、全等三角形的性质和判定,切线的性质,圆的切线长定理,根据已知得出AH的长是解题关键13、60【解析】先根据垂直的定义,得出BAD=60,再根据平行线的性质,即可得出D

16、的度数【详解】DACE,DAE=90,1=30,BAD=60,又ABCD,D=BAD=60,故答案为60【点睛】本题主要考查了平行线的性质以及垂线的定义,解题时注意:两直线平行,内错角相等14、1【解析】分析:由题意和生活实际可知:“三个人中,至少有两个人的性别是相同的”即可得到所求概率为1.详解:三人的性别存在以下可能:(1)三人都是“男性”;(2)三人都是“女性”;(3)三人的性别是“2男1女”;(4)三人的性别是“2女1男”,三人中至少有两个人的性别是相同的,P(三人中有二人性别相同)=1.点睛:列出本题中所有的等可能结果是解题的关键.15、1.【解析】试题分析:由BC的垂直平分线交AB

17、于点D,可得CD=BD=6,又由等边对等角,可求得BCD的度数,继而求得ADC的度数,则可判定ACD是等腰三角形,继而求得答案试题解析:BC的垂直平分线交AB于点D,CD=BD=6,DCB=B=40,ADC=B+BCD=80,ADC=A=80,AC=CD=6,ADC的周长为:AD+DC+AC=2+6+6=1考点:1.线段垂直平分线的性质;2.等腰三角形的判定与性质16、50【解析】根据BC是直径得出BD40,BAC90,再根据半径相等所对应的角相等求出BAO,在直角三角形BAC中即可求出OAC【详解】BC是直径,D40,BD40,BAC90OAOB,BAOB40,OACBACBAO904050

18、故答案为:50【点睛】本题考查了圆的基本概念、角的概念及其计算等腰三角形以及三角形的基本概念,熟悉掌握概念是解题的关键17、1【解析】【分析】设四边形BCED的面积为x,则SADE=12x,由题意知DEBC且DE=BC,从而得,据此建立关于x的方程,解之可得【详解】设四边形BCED的面积为x,则SADE=12x,点D、E分别是边AB、AC的中点,DE是ABC的中位线,DEBC,且DE=BC,ADEABC,则=,即,解得:x=1,即四边形BCED的面积为1,故答案为1【点睛】本题主要考查相似三角形的判定与性质,解题的关键是掌握中位线定理及相似三角形的面积比等于相似比的平方的性质三、解答题(共7小

19、题,满分69分)18、(1)证明见解析;(2)BH125【解析】(1)先判断出AOC=90,再判断出OCBD,即可得出结论;(2)先利用相似三角形求出BF,进而利用勾股定理求出AF,最后利用面积即可得出结论【详解】(1)连接OC,AB是O的直径,点C是AB的中点,AOC90,OAOB,CDAC,OC是ABD是中位线,OCBD,ABDAOC90,ABBD,点B在O上,BD是O的切线;(2)由(1)知,OCBD,OCEBFE,OCBF=OEEB,OB2,OCOB2,AB4,OEEB=23,2BF=23,BF3,在RtABF中,ABF90,根据勾股定理得,AF5,SABF12ABBF12AFBH,A

20、BBFAFBH,435BH,BH125【点睛】此题主要考查了切线的判定和性质,三角形中位线的判定和性质,相似三角形的判定和性质,求出BF=3是解本题的关键19、米【解析】试题分析:要求这棵大树没有折断前的高度,只要求出AB和AC的长度即可,根据题目中的条件可以求得AB和AC的长度,即可得到结论试题解析:解:ABEF,DEEF,ABC=90,ABDE,FABFDE, ,FB=4米,BE=6米,DE=9米,得AB=3.6米,ABC=90,BAC=53,cosBAC=,AC= =6米,AB+AC=3.6+6=9.6米,即这棵大树没有折断前的高度是9.6米点睛:本题考查直角三角形的应用,解题的关键是明

21、确题意,找出所求问题需要的条件,利用锐角三角函数进行解答20、(1)详见解析;(2)40%;(3)105;(4)【解析】(1)先求出参加活动的女生人数,进而求出参加武术的女生人数,即可补全条形统计图,再分别求出参加武术的人数和参加器乐的人数,即可求出百分比;(2)用参加剪纸中男生人数除以剪纸的总人数即可得出结论;(3)根据样本估计总体的方法计算即可;(4)利用概率公式即可得出结论【详解】(1)由条形图知,男生共有:10+20+13+9=52人,女生人数为100-52=48人,参加武术的女生为48-15-8-15=10人,参加武术的人数为20+10=30人,30100=30%,参加器乐的人数为9

22、+15=24人,24100=24%,补全条形统计图和扇形统计图如图所示:(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是100%40%答:在参加“剪纸”活动项目的学生中,男生所占的百分比为40%(3)50021%=105(人)答:估计其中参加“书法”项目活动的有105人(4)答:正好抽到参加“器乐”活动项目的女生的概率为【点睛】此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小21、(1)证明见解析;(2)证明见解析【解析】(1)根据平行四边形的对边互

23、相平行可得ADBC,再根据两直线平行,内错角相等可得AEB=EAD,根据等边对等角可得ABE=AEB,即可得证(2)根据两直线平行,内错角相等可得ADB=DBE,然后求出ABD=ADB,再根据等角对等边求出AB=AD,然后利用邻边相等的平行四边形是菱形证明即可【详解】证明:(1)在平行四边形ABCD中,ADBC,AEB=EADAE=AB,ABE=AEBABE=EAD(2)ADBC,ADB=DBEABE=AEB,AEB=2ADB,ABE=2ADBABD=ABEDBE=2ADBADB=ADBAB=AD又四边形ABCD是平行四边形,四边形ABCD是菱形22、(1)证明见解析;(2)EH=2【解析】(1)由题意推出EHB=OCB,再结合B=B,可得BHEBCO.(2)结合BHEBCO ,推出BHBC=BEOB带入数值即可.【详解】(1)证明:OD为圆的半径,D是的中点,ODBC,BE=CE=12BC,CHAB,CHB=90,HE=12BC=BE, B=EHB,OB=OC,B=OCB, EHB=OCB, 又B=B,BHEBCO(2)BHEBCO,B

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论