版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第五章微分法微分法:)?()( xF积分法积分法:)()?(xf互逆运算互逆运算不定积分 二、二、 基本积分表基本积分表 三、不定积分的性质三、不定积分的性质一、一、 原函数与不定积分的概念原函数与不定积分的概念第一节机动 目录 上页 下页 返回 结束 不定积分的概念与性质 第五章第五章 一、一、 原函数与不定积分的概念原函数与不定积分的概念引例引例: 一个质量为一个质量为 m 的质点的质点,的作tAFsin下沿直线运动下沿直线运动 ,).(tv因此问题转化为因此问题转化为:已知已知,sin)(tmAtv求求?)(tv在变力在变力试求质点的运动速度试求质点的运动速度机动 目录 上页 下页 返回
2、 结束 根据牛顿第二定律根据牛顿第二定律, 加速度加速度mFta)(tmAsin定义定义 1 . 若在区间若在区间 I 上定义的两个函数上定义的两个函数 F (x) 及及 f (x)满足满足)()(xfxF,d)()(dxxfxF或在区间在区间 I 上的一个原函数上的一个原函数 .则称则称 F (x) 为为f (x) 如引例中如引例中, tmAsin的原函数有的原函数有 ,cos tmA, 3cos tmA问题问题: 1. 在什么条件下在什么条件下, 一个函数的原函数存在一个函数的原函数存在 ?2. 若原函数存在若原函数存在, 它如何表示它如何表示 ? 定理定理1. ,)(上连续在区间若函数I
3、xf上在则Ixf)( 存在原函数存在原函数 .(下章证明下章证明)初等函数在定义区间上连续初等函数在定义区间上连续初等函数在定义区间上有原函数初等函数在定义区间上有原函数机动 目录 上页 下页 返回 结束 ,)()(的一个原函数是若xfxF定理定理 2. 的所有则)(xf原函数都在函数族原函数都在函数族CxF)( C 为任意常数为任意常数 ) 内内 .证证: 1)的原函数是)()(xfCxF)(CxF)(xF)(xf,的任一原函数是设)()()2xfx)()(xfx 又知又知)()(xfxF )()(xFx)()(xFx0)()(xfxf故故0)()(CxFx)(0为某个常数C即即0)()(C
4、xFx属于函数族属于函数族.)(CxF机动 目录 上页 下页 返回 结束 即即定义定义 2. )(xf在区间在区间 I 上的原函数全体称为上的原函数全体称为Ixf在)(上的不定积分上的不定积分,d)(xxf其中其中 积分号积分号;)(xf 被积函数被积函数;xxfd)( 被积表达式被积表达式.x 积分变量积分变量;若若, )()(xfxF则则CxFxxf)(d)( C 为任意常数为任意常数 )C 称为称为积分常数积分常数不可丢不可丢 !例如例如,xexdCexxx d2Cx 331xxdsinCx cos记作记作机动 目录 上页 下页 返回 结束 不定积分的几何意义不定积分的几何意义:)(xf
5、的原函数的图形称为的原函数的图形称为)(xfxxfd)(的图形的图形的所有积分曲线组成的所有积分曲线组成)(xf的平行曲线族的平行曲线族.yxo0 x机动 目录 上页 下页 返回 结束 的的积分曲线积分曲线 . 例例1. 设曲线通过点设曲线通过点( 1 , 2 ) , 且其上任一点处的切线且其上任一点处的切线斜率等于该点横坐标的两倍斜率等于该点横坐标的两倍, 求此曲线的方程求此曲线的方程.解解: xy2xxyd2Cx 2所求曲线过点所求曲线过点 ( 1 , 2 ) , 故有故有C2121C因此所求曲线为因此所求曲线为12 xy机动 目录 上页 下页 返回 结束 yxo)2, 1 (ox例例2.
6、 质点在距地面质点在距地面0 x处以初速处以初速0v力力, 求它的运动规律求它的运动规律. 解解: 取质点运动轨迹为坐标轴取质点运动轨迹为坐标轴, 原点在地面原点在地面, 指向朝上指向朝上 ,)0(0 xx )(txx 质点抛出时刻为质点抛出时刻为,0t此时质点位置为此时质点位置为初速为初速为,0 x设时刻设时刻 t 质点所在位置为质点所在位置为, )(txx 则则)(ddtvtx(运动速度运动速度)tvtxdddd22g(加速度加速度).0v机动 目录 上页 下页 返回 结束 垂直上抛垂直上抛 , 不计阻不计阻 先由此求先由此求)(tv 再由此求再由此求)(tx先求先求. )(tv,ddgt
7、v由由知知ttvd)()(g1Ct g,)0(0vv由,01vC 得0)(vttvg再求再求. )(txtvttxd)()(0g20221Ctvtg,)0(0 xx由,02xC 得于是所求运动规律为于是所求运动规律为00221)(xtvttxg由由)(ddtvtx,0vt g知知机动 目录 上页 下页 返回 结束 故故ox)0(0 xx )(txx xdd) 1 (xxfd)()(xf二、二、 基本积分表基本积分表 从不定积分定义可知从不定积分定义可知:dxxfd)(xxfd)(或或Cxd)2()(xF)(xF或或Cd)(xF)(xF利用逆向思维利用逆向思维xkd) 1 ( k 为常数为常数)
8、Cxk xx d)2(Cx111xxd)3(Cx ln时0 x机动 目录 上页 下页 返回 结束 ) 1( )ln()ln(xxx121d)4(xxCx arctanxxdcos)6(Cxsinxx2cosd)8(xxdsec2Cx tan或Cx cotarc21d)5(xxCxarcsin或Cx cosarcxxdsin)7(Cx cosxx2sind)9(xxdcsc2Cx cot机动 目录 上页 下页 返回 结束 xxxdtansec)10(Cx secxxxdcotcsc)11(Cx cscxexd)12(Cexxaxd)13(Caaxln2shxxeexCxchxxdch)15(Cx
9、 shxxdsh)14(2chxxeex机动 目录 上页 下页 返回 结束 xchdx2)16(Cthxxshdx2)17(Cxcoth例例3. 求求.d3xxx解解: 原式原式 =xxd34134Cx313例例4. 求求.dcossin22xxx解解: 原式原式=xxdsin21Cx cos21134xC机动 目录 上页 下页 返回 结束 三、不定积分的性质三、不定积分的性质(直接积分法直接积分法)xxfkd)(. 1xxgxfd)()(. 2推论推论: 若若, )()(1xfkxfinii则则xxfkxxfiniid)(d)(1xxfkd)(xxgxxfd)(d)()0( k机动 目录 上
10、页 下页 返回 结束 例例5. 求求.d)5(2xexx解解: 原式原式 =xexxd)25)2()2ln()2(eex2ln25xCexx2ln512ln2C机动 目录 上页 下页 返回 结束 例例6. 求求.dtan2xx解解: 原式 =xxd) 1(sec2xxxddsec2Cxx tan例例7. 求.d)1 (122xxxxx解解: 原式 =xxxxxd)1 ()1 (22xxd112xxd1xarctanCx ln机动 目录 上页 下页 返回 结束 例例8. 求求.d124xxx解解: 原式 =xxxd11) 1(24xxxxd11) 1)(1(222221dd) 1(xxxxCxx
11、xarctan313机动 目录 上页 下页 返回 结束 内容小结内容小结1. 不定积分的概念不定积分的概念 原函数与不定积分的定义原函数与不定积分的定义 不定积分的性质不定积分的性质 基本积分表基本积分表 2. 直接积分法直接积分法:利用利用恒等变形恒等变形, 及及 基本积分公式基本积分公式进行积分进行积分 .常用恒等变形方法常用恒等变形方法分项积分分项积分加项减项加项减项利用三角公式利用三角公式 , 代数公式代数公式 ,积分性质积分性质机动 目录 上页 下页 返回 结束 ,2chxxeex2shxxeex思考与练习思考与练习1. 证明证明 xexeexxxch,sh,221.shch的原函数
12、都是xxex2. 若若则的原函数是,)(xfex d)(ln2xxfx提示提示:xe)()(xexfxeln)(ln xfx1Cx 221机动 目录 上页 下页 返回 结束 提示提示:3. 若若)(xf是是xe的原函数的原函数 , 则则xxxfd)(ln提示提示: 已知已知xexf)(0)(Cexfx01)(lnCxxfxCxxxf021)(lnCxCxln10机动 目录 上页 下页 返回 结束 4. 若若)(xf;sin1)(xA;sin1)(xB的导函数为的导函数为,sin x则则)(xf的一个原函数的一个原函数是是 ( ) .;cos1)(xC.cos1)(xD提示提示: 已知已知xxfsin)(求求即即B)()(xfxsin)( ?或由题意或由题意,cos)(1Cxxf其原函数为其原函数为xxfd)(21sinCxCx机动 目录 上页 下页 返回 结束 5. 求下列积分求下列积分:.cossind)2(;)1 (d) 1 (2222xxxxxx提示提示:)1 (1)1 (1) 1 (2222xxxxxxxx2222cossincossin1)2(xx22cscsecxx22cossin22111xx)(2x2x机动 目录 上页 下页 返回 结束 6. 求不定积分求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版北京市数据中心租赁合同范本
- 二零二四年度电子合同应用软件著作权许可合同
- 北京工业大学《数字语音处理与编码》2021-2022学年第一学期期末试卷
- 北京工业大学《生命科学前沿》2022-2023学年第一学期期末试卷
- 北京工业大学《伦理学》2022-2023学年第一学期期末试卷
- 北京工业大学《学术信息素养》2022-2023学年第一学期期末试卷
- 二零二四年度体育项目咨询服务合同
- 2024版瓷砖供应商独家合作协议
- 2024年度采购供应协议(原材料)
- 北华大学《影视创作与评论》2022-2023学年第一学期期末试卷
- 一年级数学(上)计算题专项练习集锦
- 【高考语文】2024年全国高考新课标I卷-语文试题评讲
- 2024-2030年中国煤炭采煤机行业供需趋势及发展规划研究报告
- 2024年第九届“学宪法、讲宪法”知识竞赛测试考试题库及答案
- 2024年品牌营销全案策划合同
- 煤矿安全生产化标准化管理体系基本要求及评分方法宣讲材料
- 河北省石家庄市2024年七年级上学期期中数学试题【附答案】
- 湖南省2024年中考数学试卷(含答案)
- 建筑制图学习通超星期末考试答案章节答案2024年
- 小学生家长会家长发言课件
- 2023版押品考试题库必考点含答案
评论
0/150
提交评论